• Title/Summary/Keyword: Channel in Channel

Search Result 19,768, Processing Time 0.05 seconds

The Heat Transfer and Pressure Drop Characteristics on Microchannel PCHE with various Configurations (채널 형상에 따른 마이크로채널 PCHE의 열전달 및 압력강하 특성)

  • Kim, Yoon-Ho;Moon, Jung-Eun;Lee, Kyu-Jung
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.215-220
    • /
    • 2008
  • A microchannel PCHE is manufactured by the two technologies of micro photo-etching and diffusion bonding. In this paper, heat transfer and pressure drop characteristics by applying various configuration for the flow channel in the microchannel PCHE is experimentally investigated. The flow channel configurations are designed three types such as straight, wavy and offset strip channels. The performance experiment of each configuration is performed for Reynolds numbers in ranges of $100{\sim}700$ under various flow conditions for the hot side and the Reynolds number of cold side is fixed at 350. The inlet temperatures of the hot side and cold side are conducted as $40^{\circ}C$ and $20^{\circ}C$, respectively. The heat transfer performance of wavy channel, which was similar to that of offset strip channel, was much higher than that of straight channel. The effectiveness of wavy channel and offset strip channel was evaluated as about $0.5{\sim}0.9$. The pressure drop of wavy channel was highest among configurations and that of offset strip channel was lower than that of straight channel because the round curved surface of each strip edge was reduced the pressure loss.

  • PDF

Application of the H Infinity Control Principle to the Sodium Ion Selective Gating Channel on Biological Excitable Membranes

  • Hirayama, Hirohumi
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.23-38
    • /
    • 2004
  • We proposed the infinity control principle to evaluate the Biological function. The H infinity control was applied to the Sodium (Na) ion selective gating channel on the excitable cellular membrane of the neural system. The channel opening, closing and inactivation processes were expressed by movements of three gates and one inactivation blocking particle in the channel pore. The rate constants of the channel state transition were set to be voltage dependent. The temporal changes in amounts per unit membrane area of the channel states were expressed by means of eight differential equations. The biochemical mimetic used to complete the Na ion selective channel was regarded as noise. The control inputs for ejecting the blocking particle with plugging in the channel pore were set for the active transition from inactivated states to a closed or open state. By applying the H infinity control, we computed temporal changes in the channel states, observers, control inputs and the worst case noises. The present paper will be available for evaluating the noise filtering function of the biological signal transmission system.

Efficient Channel Delay Estimation for OFDM Systems over Doubly-Selective Fading Channels

  • Heo, Seo Weon;Lim, Jongtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2218-2230
    • /
    • 2012
  • In this paper, we propose an efficient channel delay estimation method for orthogonal frequency-division multiplexing (OFDM) systems, especially over doubly-selective fading channels which are selective in both the symbol time domain and subcarrier frequency domain. For the doubly-selective fading channels in single frequency network (SFN), long and strong echoes exist and thus the conventional discrete Fourier Transform (DFT) based channel delay estimation system often fails to produce the exact channel delay profile. Based on the analysis of the discrete-time frequency response of the channel impulse response (CIR) coefficients in the DFT-based channel delay estimation system, we develop a method to effectively extract the true CIR from the aliased signals by employing a simple narrow-band low-pass filter (NB-LPF). The performance of the proposed system is verified using the COST207 TU6 SFN channel model.

Online Blind Channel Normalization Using BPF-Based Modulation Frequency Filtering

  • Lee, Yun-Kyung;Jung, Ho-Young;Park, Jeon Gue
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1190-1196
    • /
    • 2016
  • We propose a new bandpass filter (BPF)-based online channel normalization method to dynamically suppress channel distortion when the speech and channel noise components are unknown. In this method, an adaptive modulation frequency filter is used to perform channel normalization, whereas conventional modulation filtering methods apply the same filter form to each utterance. In this paper, we only normalize the two mel frequency cepstral coefficients (C0 and C1) with large dynamic ranges; the computational complexity is thus decreased, and channel normalization accuracy is improved. Additionally, to update the filter weights dynamically, we normalize the learning rates using the dimensional power of each frame. Our speech recognition experiments using the proposed BPF-based blind channel normalization method show that this approach effectively removes channel distortion and results in only a minor decline in accuracy when online channel normalization processing is used instead of batch processing

A Study on Information research and Purchase Channel of Apparel product Consumer (의류제품 정보탐색과 구매채널별 소비자특성 고찰)

  • Kim, Jie-Yurn
    • Fashion & Textile Research Journal
    • /
    • v.12 no.3
    • /
    • pp.318-326
    • /
    • 2010
  • The advantages of the multi-channel retailing have been widely discussed but empirical research on fashion multi-channel retailing has been limited. In this study, multi-channel concept was discussed and then, channel choosing condition of apparel shopper and channel choosing criteria for information search and buying were investigated as a empirical study. Drawing on a sample of 298 customers of apparel products in Korea, the result demonstrated that some differences in the perception of experience goods and search goods among apparel products. And, according to buying channel, consumers were different from each other in information search time and clothing expenses. Some suggestion for the future research of multi-channel retailing was given.

An efficient channel searching method based on channel list for independent type cognitive radio systems (독립형 무선 인지 시스템에서 채널 목록 기반의 효과적 채널 검색)

  • Lee, Young-Doo;Koo, In-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1422-1428
    • /
    • 2009
  • In this paper, we consider an independent type cognitive radio system where secondary users can utilize empty channels that are not currently used by primary users having the license to these channels. In the previous works, secondary users search channels sequently or randomly to detect activities of primary user on channels. These channel searching methods however are not suitable to the characteristics of the wireless environment. Therefore, we propose a channel searching method based on the channel list for the purpose of reducing the channel searching time and improving the throughput of secondary users. In the proposed method, we firstly determine weighting value of each channel based on the history of channel activities of primary users and add the weighing value to current channel state buffer. And then, we search an empty channel from channel with smallest value to one with the biggest value. Finally, we compare the performances of the proposed method with those of the sequential channel searching and the random channel searching methods in terms of average channel searching time and average number of transmissions of secondary user.

Effects of the Curvature on the Freezing Phenomena of a Laminar Water Flow in a Curved Channel (곡유로내 물의 층류유동에서 곡부가 결빙에 미치는 영향)

  • Seo, Jeong-Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1497-1505
    • /
    • 2000
  • A numerical study is made on the ice-formation for a laminar flow in a curved channel. When the water flows through the curved channel with the walls specified below the freezing temperature, the ice layer has been formed on the curved surface, different from that of a straight channel. The fluctuation of ice layer has been predicted, considering the variation of velocity and temperature near the curved portion of channel. The study also takes into account the interaction existing between the laminar flow and the curved channel. In the solution strategy, the present study is substantially different from the existing works in that the complete set of governing equations in both the solid and liquid regions are resolved. The results from this study have been mainly presented, focusing on the variation of ice layer close to the curved portion. Numerical results have been obtained parametrically by varying the curved angle and the radius of curvature of channel, in addition to the variation of Reynolds numbers and wall temperatures of channel. The results show that the curved shape of channel has the great effect on the thickness of the solidification layer. The wave of ice layer thickness appears in the vicinity of curved portion. This behavior of ice layer has been amplified as is the increasing of curved angle and the radius of curvature of channel. In addition, the ice layer becomes thin as Reynolds numbers in increasing. And also, as the wall temperature of channel increases, the width of channel becomes to be shrunk due to the growth of ice layers in the upper and lower wall of channel.

Low Pilot Ratio Channel Estimation for OFDM Systems Based on GCE-BEM

  • Wang, Lidong;Lim, Dong-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.4
    • /
    • pp.195-200
    • /
    • 2007
  • Doubly-selective channel estimator for orthogonal frequency division multiplexing(OFDM) systems is proposed in this paper. Based on the generalized complex exponential basis expansion model(GCE-BEM), we describe the time-variant channel with time-invariant coefficients over multiple OFDM blocks. The time variation of the channel destroys the orthogonality between subcarriers, and the resulting channel matrix in the frequency domain is no longer diagonal, but the main interference comes from the near subcarriers. Based on this, we propose a channel estimator with low pilot ratio. We first develop a least-square(LS) estimator under the assumption that only the maximum Doppler frequency and the channel order are known at the receiver, and then verify that the correlation matrix of inter-channel interference(ICI) is a scaled identity matrix based on which we derive an optimal pilot insertion scheme for the LS estimator in the sense of minimum mean square error. The proposed estimator has the advantages of low pilot ratio and robustness against inter-carrier interference.

Blind Channel Equalization Using Conditional Fuzzy C-Means

  • Han, Soo-Whan
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.8
    • /
    • pp.965-980
    • /
    • 2011
  • In this paper, the use of conditional Fuzzy C-Means (CFCM) aimed at estimation of desired states of an unknown digital communication channel is investigated for blind channel equalization. In the proposed CFCM, a collection of clustered centers is treated as a set of pre-defined desired channel states, and used to extract channel output states. By considering the combinations of the extracted channel output states, all possible sets of desired channel states are constructed. The set of desired states characterized by the maximal value of the Bayesian fitness function is subsequently selected for the next fuzzy clustering epoch. This modification of CFCM makes it possible to search for the optimal desired channel states of an unknown channel. Finally, given the desired channel states, the Bayesian equalizer is implemented to reconstruct transmitted symbols. In a series of simulations, binary signals are generated at random with Gaussian noise, and both linear and nonlinear channels are evaluated. The experimental studies demonstrate that the performance (being expressed in terms of accuracy and speed) of the proposed CFCM is superior to the performance of the existing method exploiting the "conventional" Fuzzy C-Means (FCM).

THERMAL-HYDRAULIC CHARACTERISTICS FOR CANFLEX FUEL CHANNEL USING BURNABLE POISON IN CANDU REACTOR

  • BAE, JUN HO;JEONG, JONG YEOB
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.559-566
    • /
    • 2015
  • The thermalehydraulic characteristics for the CANadian Deuterium Uranium Flexible (CANFLEX)-burnable poison (BP) fuel channel, which is loaded with a BP at the center ring based on the CANFLEX-RU (recycled uranium) fuel channel, are evaluated and compared with that of standard 37-element and CANFLEX-NU (natural uranium) fuel channels. The distributions of fuel temperature and critical channel power for the CANFLEX-BP fuel channel are calculated using the NUclear Heat Transport CIRcuit Thermohydraulics Analysis Code (NUCIRC) code for various creep rate and burnup. CANFLEX-BP fuel channel has been revealed to have a lower fuel temperature compared with that of a standard 37-element fuel channel, especially for high power channels. The critical channel power of CANFLEX-BP fuel channel has increased by about 10%, relative to that of a standard 37-element fuel channel for 380 channels in a core, and has higher value relative to that of the CANFLEX-NU fuel channel except the channels in the outer core. This study has shown that the use of a BP is feasible to enhance the thermal performance by the axial heat flux distribution, as well as the improvement of the reactor physical safety characteristics, and thus the reactor safety can be improved by the use of BP in a CANDU reactor.