• Title/Summary/Keyword: Channel Error Probability

Search Result 366, Processing Time 0.022 seconds

On the Distribution of Phase Error in the Rician Fading Channel (라이시안 감쇄 채널에서의 위상오류 분포)

  • 김민종;한영열
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.8
    • /
    • pp.797-803
    • /
    • 2002
  • In this paper we derive the probability density function of the phase error of the received signal over Rician fading channel and verify its propriety as the probability density function using the zeroth moment. In general, for the error probability over fading channel we compute the error probability in the first place when it is only AWGN, and then we get the final result by averaging the first result and the probability density function of the corresponding fading channel. In this paper, however, we compute the error probability by double integration after the probability density function over fading channel is computed.

Cognitive Relay Networks with Underlay Spectrum Sharing and Channel Estimation Error: Interference Probability and BER Analysis

  • Ho-Van, Khuong
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.301-304
    • /
    • 2014
  • This paper proposes accurate interference probability and bit error rate formulas for cognitive relay networks with underlay spectrum sharing and channel estimation error (CEE). Numerous results reveal that the CEE not only degrades the performance of secondary systems (SSs) but also increases interference power caused by SSs to primary systems (PSs), eventually unfavorable to both systems. A solution to further protect PSs from this effect through reducing the power of secondary transmitters is investigated and analyzed.

Maximization of Zero-Error Probability for Adaptive Channel Equalization

  • Kim, Nam-Yong;Jeong, Kyu-Hwa;Yang, Liuqing
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.459-465
    • /
    • 2010
  • A new blind equalization algorithm that is based on maximizing the probability that the constant modulus errors concentrate near zero is proposed. The cost function of the proposed algorithm is to maximize the probability that the equalizer output power is equal to the constant modulus of the transmitted symbols. Two blind information-theoretic learning (ITL) algorithms based on constant modulus error signals are also introduced: One for minimizing the Euclidean probability density function distance and the other for minimizing the constant modulus error entropy. The relations between the algorithms and their characteristics are investigated, and their performance is compared and analyzed through simulations in multi-path channel environments. The proposed algorithm has a lower computational complexity and a faster convergence speed than the other ITL algorithms that are based on a constant modulus error. The error samples of the proposed blind algorithm exhibit more concentrated density functions and superior error rate performance in severe multi-path channel environments when compared with the other algorithms.

An analysis of bit error probability of RS/trellis concatenated coded-modulation systems for mobile radio channel (이동통신 채널에서의 RS/trellis 연접 부호변조 시스템의 비트오율 해석)

  • 김왕길;이상곤;문상재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.6
    • /
    • pp.1546-1553
    • /
    • 1996
  • The bit error probability of RS/trellis concatenated coded-modualtion system in the mobile radio channel is analyzed. A new upper bound to the symbol error probability of the inner TCM in the mobile radio channel is obtained by exploiting the unequal symbol error probability of the TCM. This bound is applied to the derivation of the upper bound to the bit error probability of the concatenated coded-modulation system. An efficient way of searching distance spectrum of the TCM in mobile radio channel is devised. Our new bounds are tighter than the earlier studied other bounds.

  • PDF

Performance Analysis of Channel Error Probability using Markov Model for SCTP Protocol

  • Shinn, Byung-Cheol;Feng, Bai;Khongorzul, Dashdondov
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.134-139
    • /
    • 2008
  • In this paper, we propose an analysis model for the performance of channel error probability in Stream Control Transmission Protocol (SCTP) using Markov model. In this model it is assumed that the compressor and decompressor work in Unidirectional Mode. And the average throughput of SCTP protocol is obtained by finding the throughputs of when the initial channel state is good or bad.

Noncentral F-Distribution for an M-ary Phase Shift Keying Wedge-Shaped Region

  • Kim, Jung-Su;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.345-347
    • /
    • 2009
  • This letter presents an alternative analytical expression for computing the probability of an M-ary phase shift keying (MPSK) wedge-shaped region in an additive white Gaussian noise channel. The expression is represented by the cumulative distribution function of known noncentral F-distribution. Computer simulation results demonstrate the validity of our analytical expression for the exact computation of the symbol error probability of an MPSK system with phase error.

  • PDF

The performance estimation of Channel coding schemes in Wideband Code Division Multiple Access System with fading channel (페이딩 환경의 W-CDMA에서 채널부호화 방식의 성능평가)

  • 이종목;심용걸
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.165-168
    • /
    • 2000
  • The bit error rate(BER)of the data passed through Wideband-Code Division Multiple Access (W-CDMA) system with turbo-codes structure is presented. The performance of turbo-codes under W-CDMA system is estimated for various users and iteration numbers of decoding. The channel model is Additive White Gaussian Noise(AWGN) and Rayleigh fading channel. When iteration number increases, bit error probability of turbo-codes decreases. and when the number of users increase, bit error probability of turbo-codes increases.

  • PDF

Blind Algorithms with Decision Feedback based on Zero-Error Probability for Constant Modulus Errors

  • Kim, Nam-Yong;Kang, Sung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.753-758
    • /
    • 2011
  • The constant modulus algorithm (CMA) widely used in blind equalization applications minimizes the averaged power of constant modulus error (CME) defined as the difference between an instant output power and a constant modulus. In this paper, a decision feedback version of the linear blind algorithm based on maximization of the zero-error probability for CME is proposed. The Gaussian kernel of the maximum zero-error criterion is analyzed to have the property to cut out excessive CMEs that may be induced from severely distorted channel characteristics. Decision feedback approach to the maximum zero-error criterion for CME is developed based on the characteristic that the Gaussian kernel suppresses the outliers and this prevents error propagation to some extent. Compared to the linear algorithm based on maximum zero-error probability for CME in the simulation of blind equalization environments, the proposed decision feedback version has superior performance enhancement particularly in cases of severe channel distortions.

Performance Analysis of Coded Cooperation over Rician Fading Channel (Rician fading 채널에서 협력통신을 위한 coded cooperation의 성능분석)

  • Lee, Jae-Young;Kim, Sung-Il;Im, Hyun-Ho;Heo, Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3A
    • /
    • pp.245-253
    • /
    • 2010
  • In this paper, we derive the performance analysis of the coded cooperation over a Rician fading channel. A new scheme called coded cooperation was suggested by using user cooperation and channel codes simultaneously. In previous works, it was verified that the coded cooperation schemes have better performance than other relay schemes in a Rayleigh fading channel. However, the high speed short range indoor wireless communication system has recently attracted research attention and its channel with very high carrier frequency(60GHz) can be typically modeled as a Rician fading channel. We derive analytical outage probabilities and bit error probabilities of the coded cooperation over the Rician fading channel and prove it to have full diversity order.

Study of New Approach of Performance Analysis for OADF Relay Systems over Rayleigh Fading channels (레일리 페이딩 채널에서의 OADF 릴레이 시스템에 대한 새로운 성능분석 기법에 관한 연구)

  • Ko, Kyun-Byoung;Seo, Jeong-Tae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.188-193
    • /
    • 2011
  • In this letter, we have derived another exact performance analysis for the OADF(opportunistic adaptive decode-and-forward) relay systems over Rayleigh fading channels. Based on error-events at relay nodes, the received instantaneous SNR(signal-to-noise ratio) is presented and its PDF(probability density function) is expressed as a more tractable form in which the number of summations and the length of each summation are specified. Then, exact average error rate, outage probability, and average channel capacity are obtained as general forms. Simulation results are finally presented to validate that the proposed analytical expressions can be a unified frame work covering all Rayleigh fading channel conditions. Furthermore, it is confirmed that OADF schemes can outperform the other schemes on the average error rate, outage probability, and average channel capacity.