• Title/Summary/Keyword: Certificate-based cryptography

Search Result 43, Processing Time 0.035 seconds

Identity-based Deniable Authenticated Encryption for E-voting Systems

  • Jin, Chunhua;Chen, Guanhua;Zhao, Jianyang;Gao, Shangbing;Yu, Changhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3299-3315
    • /
    • 2019
  • Deniable authentication (DA) is a protocol in which a receiver can generate an authenticator that is probabilistically indistinguishable from a sender. DA can be applied in many scenarios that require user privacy protection. To enhance the security of DA, in this paper, we construct a new deniable authenticated encryption (DAE) scheme that realizes deniable authentication and confidentiality in a logical single step. Compared with existing approaches, our approach provides proof of security and is efficient in terms of performance analysis. Our scheme is in an identity-based environment; thus, it avoids the public key certificate-based public key infrastructure (PKI). Moreover, we provide an example that shows that our protocol is applicable for e-voting systems.

Certificateless Public Key Encryption Revisited: Security Model and Construction (무인증서 공개키 암호 기법의 재고: 안전성 모델 및 설계)

  • Kim, Songyi;Park, Seunghwan;Lee, Kwangsu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1109-1122
    • /
    • 2016
  • Certificateless public key cryptography is a technique that can solve the certificate management problem of a public key cryptosystem and clear the key escrow issue of ID-based cryptography using the public key in user ID. Although the studies were actively in progress, many existing schemes have been designed without taking into account the safety of the secret value with the decryption key exposure attacks. If previous secret values and decryption keys are exposed after replacing public key, a valid private key can be calculated by obtaining the partial private key corresponding to user's ID. In this paper, we propose a new security model which ensures the security against the key exposure attacks and show that several certificateless public key encryption schemes are insecure in the proposed security model. In addition, we design a certificateless public key encryption scheme to be secure in the proposed security model and prove it based on the DBDH(Decisional Bilinear Diffie-Hellman) assumption.

A Micro-Payment Protocol based on PayWord for Multiple Payments (다중 지불이 가능한 PayWord 기반의 소액 지불 프로토콜)

  • 김선형;김태윤
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.2
    • /
    • pp.199-206
    • /
    • 2003
  • one of the representative micropayment protocols. The original PayWord system is designed for a user who generates paywords by performing hash chain operation for payment to an only designated vendor. In other words, a user has to create new hash chain values in order to establish commercial transactions with different vendors on the Internet. Therefore, we suggest an efficient scheme that is able to deal with business to different vendors by using only one hash chain operation to supplement this drawback. In this proposed system, a broker creates a new series of hash chain values along with a certificate for the user's certificate request. This certificate is signed by a broker to give authority enabling a user to generate hash chain values. hew hash chain values generated by a broker provide means to a user to do business with multiple vendors.

Certificate Issureing Method based on JavaCard with ECC/ECDSA Cryptography Algorithms (ECC/ECDSA 암호 알고리즘을 장착한 자바 카드 기반의 인증서 발행 방법)

  • Kim, Eun-Hwan;Park, Mi-Og;Jun, Moon-Seog
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04b
    • /
    • pp.891-894
    • /
    • 2002
  • 최근 일반인들을 대상으로 인터넷 서비스가 보편화되면서 인터넷 뱅킹이나 전자 상거래등을 통해 구매정보나 지불 정보 혹은 개인 신상 정보 등과 같은 중요한 정보의 전송에 보안의 중요성이 더욱 증대되어지고 있는 실정이다. 본 논문에서는 자바 카드와 ECC/ECDSA 알고리즘을 소개하고, 현재 자바 카드에서 지원하지 않는 ECC/ECDSA 알고리즘을 설계하여 자바 카드에 장착하였다. 그러므로 자바 카드를 이용하여 중요한 정보를 암호화/복호화 할 수 있도록 구현하였다. 또한, 인증서에서 사용하는 키들을 자바 스마트 카드를 사용하여 제공하는 방법을 제안하였다.

  • PDF

Hash-Chain based Micropayment without Disclosing Privacy Information (사생활 정보가 노출되지 않는 해쉬체인 기반 소액지불시스템)

  • Jeong Yoon-Su;Baek Seung-Ho;Hwang Yoon-Cheol;Lee Sang-Ho
    • The KIPS Transactions:PartD
    • /
    • v.12D no.3 s.99
    • /
    • pp.499-506
    • /
    • 2005
  • A hash chain is a structure organized by hash function with high speed in computation. Systems using the hash chain are using extensively in various cryptography applications such as one-time passwords, server-supported signatures and micropayments. However, the most hash chain based on the system using pre-paid method provides anonymity but has the problem to increase payment cost. In this paper, we propose a new hash chain based on the micropayment system to keep user anonymity safe through blind signature in the withdrawal process of the root value without disclosing privacy information, and to improve efficiency by using secret key instead of public key in the system without the role of certificate.

Study on WP-IBE compliant Mobile IPSec (WP-IBE 적용 Mobile IPSec 연구)

  • Choi, Cheong Hyeon
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.11-26
    • /
    • 2013
  • In the wireless Internet, it is so restrictive to use the IPSec. The MIPv4 IPSec's path cannot include wireless links. That is, the IPSec of the wireless Internet cannot protect an entire path of Host-to-Host connection. Also wireless circumstance keeps a path static during the shorter time, nevertheless, the IKE for IPSec SA agreement requires relatively long delay. The certificate management of IPSec PKI security needs too much burden. This means that IPSec of the wireless Internet is so disadvantageous. Our paper is to construct the Mobile IPSec proper to the wireless Internet which provides the host-to-host transport mode service to protect even wireless links as applying excellent WP-IBE scheme. For this, Mobile IPSec requires a dynamic routing over a path with wireless links. FA Forwarding is a routing method for FA to extend the path to a newly formed wireless link. The FA IPSec SA for FA Forwarding is updated to comply the dynamically extended path using Source Routing based Bind Update. To improve the performance of IPSec, we apply efficient and strong future Identity based Weil Pairing Bilinear Elliptic Curve Cryptography called as WP-IBE scheme. Our paper proposes the modified protocols to apply 6 security-related algorithms of WP-IBE into the Mobile IPSec. Particularly we focus on the protocols to be applied to construct ESP Datagram.

Distributed Authentication Model using Multi-Level Cluster for Wireless Sensor Networks (무선센서네트워크를 위한 다중계층 클러스터 기반의 분산형 인증모델)

  • Shin, Jong-Whoi;Yoo, Dong-Young;Kim, Seog-Gyu
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.3
    • /
    • pp.95-105
    • /
    • 2008
  • In this paper, we propose the DAMMC(Distributed Authentication Model using Multi-level Cluster) for wireless sensor networks. The proposed model is that one cluster header in m-layer has a role of CA(Certificate Authority) but it just authenticates sensor nodes in lower layer for providing an efficient authentication without authenticating overhead among clusters. In here, the m-layer for authentication can be properly predefined by user in consideration of various network environments. And also, the DAMMC uses certificates based on the threshold cryptography scheme for more reliable configuration of WSN. Experimental results show that the cost of generation and reconfiguration certification are decreased but the security performance are increased compared to the existing method.

  • PDF

CRL Distribution Method based on the T-DMB Data Service for Vehicular Networks (차량통신에서 T-DMB 데이터 서비스에 기반한 인증서 취소 목록 배포 기법)

  • Kim, Hyun-Gon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.4
    • /
    • pp.161-169
    • /
    • 2011
  • There is a consensus in the field of vehicular network security that public key cryptography should be used to secure communications. A certificate revocation list (CRL) should be distributed quickly to all the vehicles in the network to protect them from malicious users and malfunctioning equipment as well as to increase the overall security and safety of vehicular networks. Thus, a major challenge in vehicular networks is how to efficiently distribute CRLs. This paper proposes a CRL distribution method aided by terrestrial digital multimedia broadcasting (T-DMB). By using T-DMB data broadcasting channels as alternative communication channels, the proposed method can broaden the network coverage, achieve real-time delivery, and enhance transmission reliability. Even if roadside units are not deployed or only sparsely deployed, vehicles can obtain recent CRLs from the T-DMB infrastructure. A new transport protocol expert group (TPEG) CRL application was also designed for the purpose of broadcasting CRLs over the T-DMB infrastructure.

Study on Improvement of Weil Pairing IBE for Secret Document Distribution (기밀문서유통을 위한 Weil Pairing IBE 개선 연구)

  • Choi, Cheong-Hyeon
    • Journal of Internet Computing and Services
    • /
    • v.13 no.2
    • /
    • pp.59-71
    • /
    • 2012
  • PKI-based public key scheme is outstanding in terms of authenticity and privacy. Nevertheless its application brings big burden due to the certificate/key management. It is difficult to apply it to limited computing devices in WSN because of its high encryption complexity. The Bilinear Pairing emerged from the original IBE to eliminate the certificate, is a future significant cryptosystem as based on the DDH(Decisional DH) algorithm which is significant in terms of computation and secure enough for authentication, as well as secure and faster. The practical EC Weil Pairing presents that its encryption algorithm is simple and it satisfies IND/NM security constraints against CCA. The Random Oracle Model based IBE PKG is appropriate to the structure of our target system with one secret file server in the operational perspective. Our work proposes modification of the Weil Pairing as proper to the closed network for secret file distribution[2]. First we proposed the improved one computing both encryption and message/user authentication as fast as O(DES) level, in which our scheme satisfies privacy, authenticity and integrity. Secondly as using the public key ID as effective as PKI, our improved IBE variant reduces the key exposure risk.

Designing an Efficient and Secure Credit Card-based Payment System with Web Services Based on the ANSI X9.59-2006

  • Cheong, Chi Po;Fong, Simon;Lei, Pouwan;Chatwin, Chris;Young, Rupert
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.495-520
    • /
    • 2012
  • A secure Electronic Payment System (EPS) is essential for the booming online shopping market. A successful EPS supports the transfer of electronic money and sensitive information with security, accuracy, and integrity between the seller and buyer over the Internet. SET, CyberCash, Paypal, and iKP are the most popular Credit Card-Based EPSs (CCBEPSs). Some CCBEPSs only use SSL to provide a secure communication channel. Hence, they only prevent "Man in the Middle" fraud but do not protect the sensitive cardholder information such as the credit card number from being passed onto the merchant, who may be unscrupulous. Other CCBEPSs use complex mechanisms such as cryptography, certificate authorities, etc. to fulfill the security schemes. However, factors such as ease of use for the cardholder and the implementation costs for each party are frequently overlooked. In this paper, we propose a Web service based new payment system, based on ANSI X9.59-2006 with extra features added on top of this standard. X9.59 is an Account Based Digital Signature (ABDS) and consumer-oriented payment system. It utilizes the existing financial network and financial messages to complete the payment process. However, there are a number of limitations in this standard. This research provides a solution to solve the limitations of X9.59 by adding a merchant authentication feature during the payment cycle without any addenda records to be added in the existing financial messages. We have conducted performance testing on the proposed system via a comparison with SET and X9.59 using simulation to analyze their levels of performance and security.