• Title/Summary/Keyword: Central Memory

Search Result 195, Processing Time 0.03 seconds

Effect of Task-oriented Training on Cognitive Function Recovery and CNS Plasticity in Scopolamine-induced Dementia Rats (치매모델 쥐의 과제지향 훈련이 인지기능 회복과 중추신경계 가소성에 미치는 영향)

  • Kim, Souk-Boum;Kim, Dong-Hyun
    • The Journal of Korean society of community based occupational therapy
    • /
    • v.9 no.2
    • /
    • pp.23-31
    • /
    • 2019
  • Objective : The purpose of this study is to repeatedly conduct task-oriented training in scopolamine-induced dementia rats and as a result observe changes in the content of acetylcholine, a marker of cognitive function and central nervous system plasticity, to identify the improvement effect of dementia. Methods : It consisted of two groups. One group I was that did not perform task-oriented training in scopolamine-induced dementia rats and the other group II was that performed task-oriented training. Task-oriented training involved stretching, grasping and moving arms and walking obstacles on the legs. We performed a quantified passive avoidance test in the measurement of memory for cognitive function and compared the change in the content of acetylcholine for the plasticity of the central nervous system. Results : The results of the study are as follows: First, there was a significant improvement in cognitive function since the 4th days after task-oriented training of scopolamine-induced dementia rats(.00). Second, task-oriented training applied to scopolamine-induced dementia rats showed a significant increase in acetylcholine content. Conclusion : In this study, task-oriented training, which is often performed on senile dementia patients during occupational therapy intervention, was scientifically demonstrated in scopolamine-induced dementia rats by enhancement of cognitive function through memory improvement and increase in the content of acetylcholine confirming central nervous system plasticity.

Controlling a lamprey-based robot with an electronic nervous system

  • Westphal, A.;Rulkov, N.F.;Ayers, J.;Brady, D.;Hunt, M.
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.39-52
    • /
    • 2011
  • We are developing a biomimetic robot based on the Sea Lamprey. The robot consists of a cylindrical electronics bay propelled by an undulatory body axis. Shape memory alloy (SMA) actuators generate propagating flexion waves in five undulatory segments of a polyurethane strip. The behavior of the robot is controlled by an electronic nervous system (ENS) composed of networks of discrete-time map-based neurons and synapses that execute on a digital signal processing chip. Motor neuron action potentials gate power transistors that apply current to the SMA actuators. The ENS consists of a set of segmental central pattern generators (CPGs), modulated by layered command and coordinating neuron networks, that integrate input from exteroceptive sensors including a compass, accelerometers, inclinometers and a short baseline sonar array (SBA). The CPGs instantiate the 3-element hemi-segmental network model established from physiological studies. Anterior and posterior propagating pathways between CPGs mediate intersegmental coordination to generate flexion waves for forward and backward swimming. The command network mediates layered exteroceptive reflexes for homing, primary orientation, and impediment compensation. The SBA allows homing on a sonar beacon by indicating deviations in azimuth and inclination. Inclinometers actuate a bending segment between the hull and undulator to allow climb and dive. Accelerometers can distinguish collisions from impediment to allow compensatory reflexes. Modulatory commands mediate speed control and turning. A SBA communications interface is being developed to allow supervised reactive autonomy.

Some Issues of Information Storage Management for GIS Applications on Pocket PC and Windows CE 3.0

  • Duc Duong Anh;Anh Le Thuy;Hung Son Do Lenh
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.405-409
    • /
    • 2004
  • The Pocket PC has become more popular in market because of the advantages of its small size and convenience for regular customers. Pocket PC is a mobile device so that we can receive the benefits of shared data over a wireless network. Enabling us to transmit data to a central location, simply messaging from one point to the next, its ability to share information across a wireless platform is becoming central to our communication needs. However, using Windows CE - an embedded operating system, as well as being designed for mobile users, there are many limitations to memory and speed of arithmetic operations on Pocket PC. As a result, developers have to deal with many difficulties in managing information storage when developing applications, especially Geography Information System (GIS) applications. In this paper, we propose some efficient methods to store GIS data and to increase the speed of displaying maps in GIS applications developed on Pocket PC and Windows CE 3.0.

  • PDF

A topology optimization method of multiple load cases and constraints based on element independent nodal density

  • Yi, Jijun;Rong, Jianhua;Zeng, Tao;Huang, X.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.759-777
    • /
    • 2013
  • In this paper, a topology optimization method based on the element independent nodal density (EIND) is developed for continuum solids with multiple load cases and multiple constraints. The optimization problem is formulated ad minimizing the volume subject to displacement constraints. Nodal densities of the finite element mesh are used a the design variable. The nodal densities are interpolated into any point in the design domain by the Shepard interpolation scheme and the Heaviside function. Without using additional constraints (such ad the filtering technique), mesh-independent, checkerboard-free, distinct optimal topology can be obtained. Adopting the rational approximation for material properties (RAMP), the topology optimization procedure is implemented using a solid isotropic material with penalization (SIMP) method and a dual programming optimization algorithm. The computational efficiency is greatly improved by multithread parallel computing with OpenMP to run parallel programs for the shared-memory model of parallel computation. Finally, several examples are presented to demonstrate the effectiveness of the developed techniques.

Role of ginseng in the neurovascular unit of neuroinflammatory diseases focused on the blood-brain barrier

  • Kim, Minsu;Mok, Hyejung;Yeo, Woon-Seok;Ahn, Joong-Hoon;Choi, Yoon Kyung
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.599-609
    • /
    • 2021
  • Ginseng has long been considered as an herbal medicine. Recent data suggest that ginseng has antiinflammatory properties and can improve learning- and memory-related function in the central nervous system (CNS) following the development of CNS neuroinflammatory diseases such as Alzheimer's disease, cerebral ischemia, and other neurological disorders. In this review, we discuss the role of ginseng in the neurovascular unit, which is composed of endothelial cells surrounded by astrocytes, pericytes, microglia, neural stem cells, oligodendrocytes, and neurons, especially their blood-brain barrier maintenance, anti-inflammatory effects and regenerative functions. In addition, cell-cell communication enhanced by ginseng may be attributed to regeneration via induction of neurogenesis and angiogenesis in CNS diseases. Thus, ginseng may have therapeutic potential to exert cognitive improvement in neuroinflammatory diseases such as stroke, traumatic brain injury, multiple sclerosis, Parkinson's disease, and Alzheimer's disease.

Emerging role of anti-proliferative protein BTG1 and BTG2

  • Kim, Sang Hyeon;Jung, In Ryeong;Hwang, Soo Seok
    • BMB Reports
    • /
    • v.55 no.8
    • /
    • pp.380-388
    • /
    • 2022
  • The B cell translocation gene 1 (BTG1) and BTG2 play a key role in a wide range of cellular activities including proliferation, apoptosis, and cell growth via modulating a variety of central biological steps such as transcription, post-transcriptional, and translation. BTG1 and BTG2 have been identified by genomic profiling of B-cell leukemia and diverse lymphoma types where both genes are commonly mutated, implying that they serve as tumor suppressors. Furthermore, a low expression level of BTG1 or BTG2 in solid tumors is frequently associated with malignant progression and poor treatment outcomes. As physiological aspects, BTG1 and BTG2 have been discovered to play a critical function in regulating quiescence in hematopoietic lineage such as Hematopoietic stem cells (HSCs) and naive and memory T cells, highlighting their novel role in maintaining the quiescent state. Taken together, emerging evidence from the recent studies suggests that BTG1 and BTG2 play a central anti-proliferative role in various tissues and cells, indicating their potential as targets for innovative therapeutics.

Condition assessment of stay cables through enhanced time series classification using a deep learning approach

  • Zhang, Zhiming;Yan, Jin;Li, Liangding;Pan, Hong;Dong, Chuanzhi
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.105-116
    • /
    • 2022
  • Stay cables play an essential role in cable-stayed bridges. Severe vibrations and/or harsh environment may result in cable failures. Therefore, an efficient structural health monitoring (SHM) solution for cable damage detection is necessary. This study proposes a data-driven method for immediately detecting cable damage from measured cable forces by recognizing pattern transition from the intact condition when damage occurs. In the proposed method, pattern recognition for cable damage detection is realized by time series classification (TSC) using a deep learning (DL) model, namely, the long short term memory fully convolutional network (LSTM-FCN). First, a TSC classifier is trained and validated using the cable forces (or cable force ratios) collected from intact stay cables, setting the segmented data series as input and the cable (or cable pair) ID as class labels. Subsequently, the classifier is tested using the data collected under possible damaged conditions. Finally, the cable or cable pair corresponding to the least classification accuracy is recommended as the most probable damaged cable or cable pair. A case study using measured cable forces from an in-service cable-stayed bridge shows that the cable with damage can be correctly identified using the proposed DL-TSC method. Compared with existing cable damage detection methods in the literature, the DL-TSC method requires minor data preprocessing and feature engineering and thus enables fast and convenient early detection in real applications.

Seismic fragility assessment of steel moment-resisting frames equipped with superelastic viscous dampers

  • Abbas Ghasemi;Fatemeh Arkavazi;Hamzeh Shakib
    • Earthquakes and Structures
    • /
    • v.25 no.5
    • /
    • pp.343-358
    • /
    • 2023
  • The superelastic viscous damper (SVD) is a hybrid passive control device comprising a viscoelastic damper and shape memory alloy (SMA) cables connected in series. The SVD is an innovative damper through which a large amount of seismic energy can dissipate. The current study assessed the seismic collapse induced by steel moment-resisting frames (SMRFs) equipped with SVDs and compared them with the performance of special MRFs and buckling restrained brace frames (BRBFs). For this purpose, nonlinear dynamic and incremental dynamic analysis (IDA) were conducted in OpenSees software. Both 5- and 9-story special MRFs, BRBFs, and MRFs equipped with the SVDs were examined. The results indicated that the annual exceedance rate for maximum residual drifts of 0.2% and 0.5% for the BRBFs and MRFs with SVDs, respectively, were considerably less than for SMRFs with reduced-beam section (RBS) connections and that the seismic performances of these structures were enhanced with the use of the BRB and SVD. The probability of collapse due to residual drift in the SVD, BRB, and RBS frames in the 9-story structure was 1.45, 1.75, and 1.05 times greater than for the 5-story frame.

fMRI evidence of compensatory mechanisms during a verbal working memory task in individuals with alcohol use disorders (알코올 사용 장애자의 언어 작업 기억과 관련된 뇌의 보상 기전: fMRI 연구)

  • Park, Mi-Suk;Son, Seon-Ju;Park, Ji-Eun;Eum, Yeong-Ji;Kim, Suk-Hui;Yu, In-Gyu;Son, Jin-Hun
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.05a
    • /
    • pp.101-104
    • /
    • 2009
  • This study investigated compensatory mechanisms in the brain during a verbal working memory task among people with Alcohol Use Disorders (AUD). A total of 21 college male students participated in the study: eleven AUD participants and 10 normal controls. Study participants were asked to complete the Korean version of the Wechsler Adult Intelligence Scale-III (K-WAIS-III) prior to the fMRI experiment. Verbal 0-back and 2-back tasks were used to assess brain activities of the participants' verbal working memory. Brain scanning was performed on Siemens SONATA 1.5T Scanner while participants were performing the 0-back and 2-back tasks. Within the AUD group, participants with greater dependency to alcohol (based on DSM-IV criteria) in the past 1 year showed lower mean score on the 'Similarities' of the K-WAIS-III (r=-0.63, p<0.05, N=11). The more participants experienced alcohol withdrawal symptoms in the past 1 year, the lower the score they received on the K-WAIS-III 'Picture Arrangement' (r=-0.69, p<0.05, n=11). The fMRI regression results showed that individuals who present greater degree of alcohol dependency symptoms are likely to show greater brain activation in the bilateral middle frontal gyri (BA 9) during the verbal working memory task. The degree of alcohol withdrawal symptoms were associated with increased brain activation in the left superior and middle frontal gyri (BA8), left precentral gyrus (BA 6), and left inferior parietal lobule (BA 40). The study findings showed that the degree of alcohol abuse/dependence and withdrawal symptoms were associated with decreased cognitive function and increased activations in brain regions particularly important for abstract reasoning (BA 9), central executive (BA 9), or spatial storage (BA 40) during a working memory task. Therefore, these results could support previous studies suggesting that the neural system of people with ADD may adopt a brain compensatory mechanism to maintain normal level of cognitive functions.

  • PDF

A study of the current(2003-2005) prevalence of anti-HBs and immunologic memory of hepatitis B vaccine in children from the central area of Korea (최근(2003-2005) 우리나라 중부지역 소아에서 B형 간염 항체 보유율과 백신의 면역학적 기억에 대한 연구)

  • An, Young Won;Chung, Eun Hee;Rheem, Insoo
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.6
    • /
    • pp.630-634
    • /
    • 2006
  • Purpose : This study was conducted to assess the current(2003-2005) prevalence of anti-HBs and immunologic memory for Hepatitis B vaccine in children from the central area of Korea. Methods : Subjects were chosen from children and adolescents who received tests for hepatitis B surface antigen(HBsAg) and anti-HBs at Dankook University Hospital from March 2003 to May 2005. Among these, antibodies to hepatitis B core antigen(IgG anti-HBc) were checked. A single booster vaccination was performed on children whose anti-HBs titers were under 10 mIU/mL. One month after booster vaccination we rechecked the anti-HBs titer. Results : A total of 3,277 subjects were tested for HBsAg/anti-HBs, and 1,913(58.4 percent) of them were positive for anti-HBs. Of these, 29 subjects(0.9 percent) were positive for HBsAg. Positive results for anti-HBs by age were 78.6 percent for 6-12 months of age, 62.7 percent for 1-3 years of age, 51.9 percent for 4-6 years of age, 49.5 percent for 7-12 years of age, 63.4 percent for 13-15 years of age and 72.2 percent for 16-18 years of age. The 80 subjects who were tested negative for HBsAg/anti-HBs received a single booster vaccine, 71 subjects were tested positive for antibodies. IgG anti-HBc titer was checked for 169 of the subjects, 5 subjects were positive. Conclusion : In our study, a significant anamnestic response was observed in 88.8 percent of children. This is believed to be a result of the relatively long immunologic memory effect of the hepatitis B vaccination in children from the central area of Korea.