DOI QR코드

DOI QR Code

Effect of Task-oriented Training on Cognitive Function Recovery and CNS Plasticity in Scopolamine-induced Dementia Rats

치매모델 쥐의 과제지향 훈련이 인지기능 회복과 중추신경계 가소성에 미치는 영향

  • Kim, Souk-Boum (Dept. of Occupational Therapy, Cheju Halla University) ;
  • Kim, Dong-Hyun (Dept. of Occupational Therapy, Gimcheon University)
  • 김석범 (제주한라대학교 작업치료과) ;
  • 김동현 (김천대학교 작업치료학과)
  • Received : 2019.07.31
  • Accepted : 2019.08.23
  • Published : 2019.08.31

Abstract

Objective : The purpose of this study is to repeatedly conduct task-oriented training in scopolamine-induced dementia rats and as a result observe changes in the content of acetylcholine, a marker of cognitive function and central nervous system plasticity, to identify the improvement effect of dementia. Methods : It consisted of two groups. One group I was that did not perform task-oriented training in scopolamine-induced dementia rats and the other group II was that performed task-oriented training. Task-oriented training involved stretching, grasping and moving arms and walking obstacles on the legs. We performed a quantified passive avoidance test in the measurement of memory for cognitive function and compared the change in the content of acetylcholine for the plasticity of the central nervous system. Results : The results of the study are as follows: First, there was a significant improvement in cognitive function since the 4th days after task-oriented training of scopolamine-induced dementia rats(.00). Second, task-oriented training applied to scopolamine-induced dementia rats showed a significant increase in acetylcholine content. Conclusion : In this study, task-oriented training, which is often performed on senile dementia patients during occupational therapy intervention, was scientifically demonstrated in scopolamine-induced dementia rats by enhancement of cognitive function through memory improvement and increase in the content of acetylcholine confirming central nervous system plasticity.

목적 : 본 연구는 치매모델 쥐에게 과제지향 훈련을 반복적으로 실시하고 그 결과로 인지기능과 중추신경계 가소성의 한 지표 물질인 아세틸콜린의 함량 변화를 관찰하여 치매의 개선 효과를 확인하는데 그 목적이 있다. 연구방법 : 스코폴라민을 투여한 치매모델 쥐에게 과제지향 훈련을 수행하지 않은 실험군I과 과제지향 훈련을 수행한 실험군II으로 구성하였다. 과제지향 훈련은 앞발의 뻗기, 잡기, 옮기기를 적용하였고 장애물 보행을 실시하였다. 인지기능은 기억력의 측정에 정량화된 수동회피검사를 실시하였고 중추신경계 가소성의 변화는 아세틸콜린의 함량의 변화를 비교하였다. 결과 : 연구의 결과는 다음과 같다. 첫째, 스코폴라민을 투여한 치매모델 쥐의 과제지향 훈련을 실시한 후 4일부터 인지 기능의 유의미한 향상이 있었다(.00). 둘째, 스코폴라민을 투여한 치매모델 쥐에 적용한 과제지향 훈련은 아세틸콜린 함량의 유의미한 증가를 보였다(.00). 결론 : 본 연구에서는 작업치료 중재 중 임상에서 노인성 치매환자에게 많이 수행하고 있는 과제지향 훈련을 치매모델 쥐에게 수행함으로서 기억력 개선을 통한 인지기능 향상과 중추신경계 가소성을 확인할 수 있는 아세틸콜린의 함량 증가를 과학적으로 입증하였다.

Keywords

References

  1. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th edition). Arlington, US: American Psychiatric Publishing Inc.
  2. Arya, K. N., Verma, R., Garg, R. K., Sharma, V. P., Agarwal, M., & Aggarwal, G. G. (2012). Meaningful task-specific training(MTST) for stroke rehabilitation: A randomized controlled trial. Topics in Stroke Rehabilitation, 19(3), 193-211. https://doi.org/10.1310/tsr1903-193
  3. Bartus, R. T., Dean, R. L., Beer, B., & Lippa, A.S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science, 217, 408-414. https://doi.org/10.1126/science.7046051
  4. Bass-Haugen, J., Mathiowetz, V., & Flinn, N. (2008). Optimizing motor behavior using the occupational therapy task-oriented approach. In M. V. Radomski & C. A. Trombly Latham (Eds.), Occupational therapy for physical dysfunction (6th ed., pp. 598-617). Philadelphia: Lippincott Williams & Wilkins.
  5. Boer, C., Pel, J. M., Steen, J., & Mattace-Raso, F. (2015) Delays in manual reaching are associated with impaired functional abilities in early dementia patients. Dementia Geriatr Cogn Disord., 40, 63-71. https://doi.org/10.1159/000377674
  6. Connolly, N. K., & Williams, M. E. (1993). Plaques and tangles in approaching dementia. Gerontologist, 33, 133-135. https://doi.org/10.1093/geront/33.1.133
  7. Dick, M. B. (1992). Motor and procedural memory in Alzheimer's disease. In L. Backman(Ed). Memory functioning in dementia. 135-152. Amsterdam: North-Holland.
  8. Fan, Y., Hu, J., Li, J., Yang, Z., Xin, X., Wang, J., Ding, J., & Geng, M. (2005). Effect of acidic loigosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neurosci. Lett., 374, 222-226 https://doi.org/10.1016/j.neulet.2004.10.063
  9. Ferri, C. P., et al. (2005). Global prevalence of dementia: a Delphi consensus study. Lancet, 366, 2112-2117. https://doi.org/10.1016/S0140-6736(05)67889-0
  10. Franssen, E. H., Reisberg, B., Kluger, A., Sinaiko, E., & Boja, C. (1991). Cognition-independent neurologic symptoms in normal aging and probable Alzheimer's disease. Arch Neurol., 48, 148-154. https://doi.org/10.1001/archneur.1991.00530140040015
  11. Giovannini, M. G., Casamenti, F., & Bartolini, L. (1997). The brain cholinergic system as a target of cognition enhancers. Behav. Brain Res., 83, 1-5. https://doi.org/10.1016/S0166-4328(97)86038-X
  12. Gitlin, L. N., Corcoran, M., Winter, L., Boyce, A., & Hauck, W. W. (2001). Arandomized, controlled trial of a home environmental intervention effect on efficacy and upset incaregivers and on daily function of persons with dementia. The Gerontologist, 41(1), 4-14. https://doi.org/10.1093/geront/41.1.4
  13. Hestrin, S. (1949). Thereaction of acetylcholine and other carboxylic and derivatives with hydroxylamine and its analytical application. J. Biol Chem., 180, 249-261. https://doi.org/10.1016/S0021-9258(18)56740-5
  14. Howes, M. J. R., & Perry, E. (2011). The role of phytochemicals in the treatment and prevention of dementia. Drugs Aging, 28(6), 439-468. https://doi.org/10.2165/11591310-000000000-00000
  15. Jacobs, J. I., Van Boxtel, M. P., Jolles, J., Verhey, F. R., & Uylings, H. B. (2012) Parietal cortex matters in Alzheimer's disease: an overview of structural, functional and metabolic findings. Neurosci Biobehav Rev., 36, 297-309. https://doi.org/10.1016/j.neubiorev.2011.06.009
  16. Kadir, A., Almkvist, O., & Wall, A. (2006). PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology, 188, 509-520. https://doi.org/10.1007/s00213-006-0447-7
  17. Karch, C. M., Jeng, A. T., Nowotny, P., Cady, J., Cruchaga, C., & Goate, A. M. (2012). Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease brains. PloS one, 7(11), e50976. https://doi.org/10.1371/journal.pone.0050976
  18. Kielhofner, G. (1992). Conceptual foundation of occupational therapy(2nd ed.). Philadelphia: FA davis Co.
  19. Kim, D. R., Lee, S. Y., Lee, S. H., Lee, Y. J., & Lee, Y. J. (2019). Factors affecting social distance between nursing students and older adults with demetia: focusing on dementia knowledge, attitude and ageism. Journal of Korea Convergence Society, 10(7), 373-381. https://doi.org/10.15207/JKCS.2019.10.7.373
  20. Kovacs, G. G., Alafuzoff, I., Al-Sarraj, S., et al. (2008). Mixed brain pathologiesin dementia: The BrainNet Europeconsortium experience. Dement Geriatr Cogn Disord., 26(4), 343-350. https://doi.org/10.1159/000161560
  21. Land, M. F. (2006). Eye movements and the control of actions in everyday life. Prog Retin Eye Res., 25, 296-324. https://doi.org/10.1016/j.preteyeres.2006.01.002
  22. Mathew, A., yoshida, Y., Maekawa, T., & Sakthi Kumar, D. (2011). Alzheimer's disease: Cholesterol a menace? Brain Res Bull., 86, 1-12. https://doi.org/10.1016/j.brainresbull.2011.06.006
  23. Murphy, S. L., Williams, C. S., & Gill, T. M. (2002). Characteristics associated with fear of falling and activity restriction in community-living older persons. J Am Geriatr Soc., 50, 516-520. https://doi.org/10.1046/j.1532-5415.2002.50119.x
  24. Perry R. J., Hodges J. R. (1999). Attention and executive deficits in Alzheimer’s disease: a critical review. Brain, 122, 383-404. https://doi.org/10.1093/brain/122.3.383
  25. Perry, E. K. (1986). The cholinergic hypothesis - ten years on. Br Med Bull, 42, 63-69. https://doi.org/10.1093/oxfordjournals.bmb.a072100
  26. Perry, E. K., Tomlinson, B. E., & Blessed, G. (1978). Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J., 2, 1457-1459. https://doi.org/10.1136/bmj.2.6150.1457
  27. Pettersson, A. F., Engardt, M., & Wahlund, L. O. (2002). Activity level and balance in subjects with mild Alzheimer's disease. Dement Geriatr Cogn Disord., 13, 213-216. https://doi.org/10.1159/000057699
  28. Pierrot-Deseilligny, C., Milea, D., & Muri, R. M. (2004). Eye movement control by the cerebral cortex. Curr Opin Neurol., 17, 17-25. https://doi.org/10.1097/00019052-200402000-00005
  29. Richards C. L., Malouin F., Wood-Dauphinee S., Williams J. I., Bouchard J. P., Brunet D. (1993). Task-specific physical therapy for optimization of gait recovery in acute stroke patients. Am Congr Rehabil Med Am Acad Phys Med Rehabil., 74, 612-620.
  30. Schliebs, R., & Arendt, T. (2011). The cholinergic system in agingand neuronal degeneration. Behav Brain Res., 221, 555-563. https://doi.org/10.1016/j.bbr.2010.11.058
  31. Selkoe, D. J. (2001). Alzheimer's disease: genes, proteins, and therapy. Physiol. Rew., 81, 741-766.
  32. Thomas, V. S. (2001). Excess functional disability among demented subjects? Findings from the Canadian study of health and aging. Dement Geriatr Cogn Disord., 12, 206-210. https://doi.org/10.1159/000051259
  33. Van der Zee, E. A., Biemans, B. A. M., Gerkema, M. P. & Daan, S. (2004). Habituation to a test apparatus during as sociative learning is sufficient to enhance muscarinic acethylcholine receptor immuno reactivity in rat supra chiasmatic nucleus. J. Meuro. sci. Res, 78, 508-519.
  34. Winstein, C. J., Rose, D. K., Tan, S. M., Lewthwaite, R., Chui, H. C., Azen, S. P. (2004). A randomized controlled comparison of upperextremity rehabilitation strategies in acute stroke; a pilot study of immediate and longterm outcomes, Arch. Phys. Med. Rehabil., 85, 620-638. https://doi.org/10.1016/j.apmr.2003.06.027