Some Issues of Information Storage Management
for GIS Applications on Pocket PC and Windows CE 3.0

Duong Anh Duc, Le Thuy Anh, Do Lenh Hung Son
* Dept of Software Engineering, University of Natural Sciences, National University of HCM City,Vietnam
Tel : +84-08-8354-266 Fax : +81-00-111-6789 E-mail: {daduc, ltanh, dlhson}@fit.hcmuns.edu.vn

Abstract:

The Pocket PC has become more popular in market because of the advantages of its small size and convenience for
regular customers. Pocket PC is a mobile device so that we can receive the benefits of shared data over a wireless
network. Enabling us to transmit data to a central location, simply messaging from one point to the next, its ability
to share information across a wireless platform is becoming central to our communication needs.

However, using Windows CE — an embedded operating system, as well as being designed for mobile users, there
are many limitations to memory and speed of arithmetic operations on Pocket PC. As a result, developers have ¢
deal with many difficulties in managing information storage when developing applications, especially Geograpliy
Information System (GIS) applications. In this paper, we propose some efficient methods to store GIS data and o
increase the speed of displaying maps in GIS applications developed on Pocket PC and Windows CE 3.0.

1. INTRODUCTION

As Vietnam's economy is currently experiencing the
process of development and integration, traffic has
become one of the primary concerns of the society.
However, the traffic system of the country in general
and in Hochiminh City in particular is still facing many
problems and thus needs amelioration, such as
improving the public transportation system and
providing vehicle operators with sufficient information.

Besides, the increasing number of foreign tourists to
Vietnam calls for an effective method of providing
them with the city’s geographical information, and the
digital map is the best solution in this case.

Given the above results, we have done researches and
developed a digital map software on some embedded
devices, especially on Pocket PC and Windows CE
devices.

PocketPC runs on embedded operating system
Windows CE, which provides limited memory to
applications developed on it. Therefore, when
developing Geography Information System (GIS)
applications on PocketPCs and Windows CE, it is
recommended that we optimize the memory usage and
enhance the speed of these applications.

In this paper, we present some solutions used widely
on the world and our implementation in order to
reduce redundant memory and to increase the speed of
rendering maps in Pocket PC and Windows CE 3.0.

2. SOME FEATURES OF GIS-
APPLICATION AFFECTING TO
MEMORY USAGE AND THE SPEED OF

APPLICATIONS

2.1. The detail level of rendering spatial objects

Depending on the purpose of using, spatial data ncec a
particular accuracy. For example in a GIS laad
management system, a lake is represented by a 350-
points polygon, but in a GIS traffic system, 110 poir ts
are enough.

2.2. Topology Relationship level

As mentioned in 2.1 — topology network, we need 0
choose a suitable topology level because beside the
storing cost, processing cost for every time updatir.g
data will be huge and it is wasteful if the topology
level is larger than necessary.

2.3. The detail level of attribute data

Storing unnecessary attribute data will increase tte
storing cost but the processing cost may not increase if
well management

2.4. Calculated attributes

Some attributes such as length (or perimeter), tke
minimal bounding rectangle (MBR)... can te
calculated from spatial data. Precalculating these
attributes and updating only when there are changes
will make the processing cost come-dowr
considerably but increase storing cost. Besides that, 12
some basic GIS softwares, that programmers can altcr
directly to spatial data may lead to the asynchronisri
of the calculated attributes and spatial objects. Th:
strong point of this method is the ability to query thes:
attributes and to make the best of competence of
DBMS.

2.5. Real number storing and computation
All operations on spatial data are real-numbe-

operations. In principle, processing cost on real
numbers is larger so far than on integer.

403

Table I Time required (ms) for real and integer number
computation

Devices |Pentium |Pentiu | Pocket| Pocket
11333 | mIV PC PC HP
MHz 1.5 2002 | Jornada

GHz [Emulat| 928

or (on | (ARM4

P415| 206

GHz)' | MHz)

+- | int 3.845 | 2.157 | 3.600 | 11.794
float | 3.716 |2.125 | 6.750 | 85-538
Double | 3.705 | 2.171 | 2.175 | 241.039

x/= | int 17.465 1 9.000 | 9.013 | 46.090
float 13.790 | 4.672 | 4.900 | 116.092
Double | 6.419 | 4.641 | 4.925 | 399.845

Table 1 shows that the time for processing floating
point number on Pentium is not longer than integer.
With integer multiplication and division, if the
numbers are stored as real, the processing cost of
multiplying and dividing is really smaller.

While the processing time between integer and real
numbers is not different so far on Pentium-computer,
table 1 also shows a considerable difference on Pocket
PC: 7.25/20 times for +/- and 2.5/8.67 times for x/+
when using 4/8 bytes floating point numbers instead of
integer.

Should we replace real-number processing with
integer processing?

Depending on the type of processor (floating point
unit) that our application will run on, we will decide to
replace floating point operators or not. Another
element should be mentioned is that the limitation in
data range of integer operators may lead to
overloading, especially with integer multiplication.

3. HIGH-COST OPERATIONS IN THE
POCKET PC GIS APPLICATIONS

The property of GIS is that every step of processing or
analyzing needs to deal with a large amount of
objects.. We have to deal with many big problems,
especially in devices not having a powerful processing
unit like desktop. This section shows some processes
of these problems. Because these processes are used
frequently, it is essential that we consider to improve
the speed when running in embedded devices.

406

3.1. MBR (Minimal Bounding Rectangle)

MBR is used frequently in GIS to save the cost of
redundant clipping steps. We can use MBR to make an
index for accessing spatial objects when making
queries such as: specifying objects to draw in a map,
finding objects next to each other, specifying map
objects when users click on it. Figure 1 shows the way
to use MBR to completely reject the cost of drawing
objects not in the display area including the cost of
clipping and mapping objects onto the display area.

Fig. 1. MBR is used to specify whether an object can be
rendered.

MBR is used in almost all operations on spatial
objects. Therefore when objects are defined with too -
many points, it makes the cost of specifying MBR
raise too high.

3.2. Qlipping

Clipping is an opertion that is used very often in GIS
applications. When we need to display or print a part
of a map, we must use clipping to draw parts of the
objects that stay in the display area only. Figure 2
shows the clipping operation before rendering objects
on the screen.

Fig. 2. An special case of using clipping.

We also need to pay attention to some special cases
when implementing clipping such as: clipping a
polygon can result in one polygon or more as shown in
figure 2.

The cost of clipping is very high, thus we should try to
use MBR in GIS applications whenever the output
result is NULL to avoid clipping. The cost of testing
whether two MBR rectangulars intersect each other is
certainly lower than the cost of clipping.

3.3. Rendering spatial objects

Spatial objects are saved in database with their real co-
ordinates. In order to render these objects onto the
screen, we have to make a transformation to change

from the real co-ordinate to the screen co-ordinate. We
must use a corresponding affine transformation matrix
depending on the display area and screen resolution of
the users.

The number of GIS applications that allow users to
rotate display area freely is so rare. If there were any,
it’d only allow users to rotate at specific angles such
as: 90°, 180° 270° ... Supplying users with a rotating
display area leads to the complexity of using clipping
to reject the objects staying outside the display area,
because the edges of the MBR are no longer parallel to
x-axis and y-axis.

Thus, the transformation from real co-ordinates to
screen depends on 3 parameters: the ratio (s), the
distance x (dx), the distance y (dy) according to the
formula below:

Table 2 The transformation from real co-ordinates to screen
co-ordinates

x'=round(s x x) + dx

y'=round(sx y)+dy

With:

x,y: real co-ordinate

x",y’: transfomred co-ordinate

s: the ratio

dx, dy: the distance
In some special cases we also need to transform from
screen co-ordinate to real co-ordinate such as when
users click on the screen to make spatial queries, we
have to specify the real co-ordinates by using the
formula below:

Table 3 The transformation from screen co-ordinates to real
co-ordinates

3.4. Hit Test — Specifying chosen spatial objects

Theoretically, specifying chosen objects is simply
finding the object having the shortest path to the point
-where users click on. For many objects such as:
zigzag, polygon, or even the area made up of a
polygon including many polygons inside...the cost
will be very high.

In fact, when users choose an object, it is not necessary
to pay attention to other objects too far. from the
clicking point (larier than a number d). Therefore, we

can use a square with edges of 2d to reject all the
objects that stay outside the selected area by testing the
MBR property of these objects. Frequently after doing
this, the number of objects needing to be calculated the
distance from the clicking point becomes so small.

Fig. 3. Using a square in specifying hit point.

4. SOME EFFICIENT METHODS TO
ACHIEVE HIGH PERFORMANCE IN
THE POCKET PC GIS APPLICATION

4.1. Spatial index tree for MBR

Whenever we want to find out which objects will te
rendered on the screen or whenever users want to
make non—spatial queries, we need to test if the MBR
of these objects intersects the rectangular of the screen,
as well as testing to reject objects that we don’t need to
render immediately.

If we use an index for MBR, the cost will be lower
than the cost of testing MBR of all objects.

Here, we show some implementing approaches of
spatial index that we have tested their performance on
Pocket PC.

4.1.1. Common approaches

Binary Search Tree

The specific characteristic of this method is tha:
searching-space will be divided into two parts ir
honrizontal and vertical continuously until there is nc
part left. Some examples: KD-Tree, LSD-Tree...

{100,100)

30.90) chia dgc (»)
F(80,70)

‘;0,60) chia ngang 9 e
© @ O

chia dg¢

E(70,20)

Fig. 4. The structure of KD-Tree

407

Binary Search Tree in cooperation with B-tree.
Today there are several algorithms such as: KBD-Tree,
R-tree, R*-Tree, TV-Tree, X-Tree... with various
approaches.

® o s1§s2
S [] @
: []
[G .
® gy S q—
[} S 82
o|® e st o
2 ‘ S2

SR G

Fig. 5. The structure of K-D-B- Tree

t t] F*E RS E!
. aag R's"‘!"' 'Bzwndex node
:

:EA — Leaf node
4 : i
'S g u_
‘u»'w e Res U :
e Fuxwagunn L]
iukd. i D
Rafr kIR

~

Fig. 10. The structure of R-tree

, faxRFRAEIRNIT NP
Rz
*ro- wied 1 BN
, i o
L3

- IFZ.

“
F2
E

EELT]
EEEEFD

B R . S \):

Fig. 11. The structure of R*-tree

4.1.1. Our own approach

When using R-Tree, in some cases we’ll have to
examine two sub-trees because the MBR of two these
may intersect each other. When using R*-Tree, the
objects may appear in the two sub-trees, thus we have
to mark the objects to avoid re-exmanining them.. -

We suggest using R+Tree to implement and set the
condition in that one object can only appear in one
sub-Tree (like the condition of R-Tree). If there is an
object appearing more than once, we’ll only save it at
the lowest node of the tree having a path to that object
(in the worst case this is the root of the tree).

408

The way of this division is to divide searching-space
horizonly and then vertically: the node at the odd level
will be divided vertically and the node at the even
level will be divided horizonly. After dividing the
searching space into two parts, there will be some
objects appearing on the border (these objects belong
to both parts). In this case these objects will be saved
at the node being traversed.

One node can be stored up to bucket objects, if there
are other objects inserted, we have to re-divide the
searching space. The value of bucket we recommmend
here is 8 because if bucket is smaller than § the cost of
dividing and searching is high, if bucket is bigger than
8 the Sequential Search can not be applied.

The defect of this method is that when we divide the
searching space, there will be more than bucket
objects appearing on the border. At that time, the
node must be stored more than bucket objects. This
will lead to a more complicated data arrangement,
moreover the searching process can be uneffective
because the node has too many objects, especially the
root of the index tree.

After creating a tree, all spatial queries will be made as
below: Examine(root, rectangular-want-to-test).
Function Examine(node, rectangular) tests whether the
rectangular intersects the MBR or not. If there is no
intersection between them, fucntion ends. Otherwise,
the function will examine all the objects served in the
node sequentially, and then call recursively to the two
sub-node:
e If the left node is NOT equal NULL then
Examine(left-node, rectangular)
e If the right node is NOT equal NULL then
Examine(right-node,rectangular)

A

T
F

/-
i
oMU

Eza .

/oA \

Fig.1 Tree division with bucket = 2

4.2. Reduction in Real number multiplication

When rendering objects on the screen, we need to
transform from the real co-ordinate to the screen co-
ordinate with 3 parameters s,dx,dy (see the formula in
section 1.1.3.4)

Note that when users have chosen an apropriate
display angles, all the operations to examine the map
will almost be movement operations. This operation
only makes the paramater dx, dy changed, the
parameters s is left unchanged. Thus, we can reduce
the cost of multiplying real numbers by using
secondary variables. Here are the code in C++:

int dx, dy:
float s;
Point
SpatialObject: :Transform(TFPoint
fpointRealwWorld)
{
Point pointResult;
pointResult.x = Round (s*
fpointRealWorld.x) + dx;
pointResult.y = Round (s*
fpointRealWorld.y) + dy;
return pointResult;

In this code, when s unchanges, the result of function
Round(s * fpointRealWorld.x) can be saved in an
integer variable nScaledX for every point of the
object. The same thing for integer variable nScaleY.
These two variables will be updated whenever s
changes or the space informations of the objects
change.

nScaledX = Round{(s*
fpointRealWorld.x) ;
nScaledy = Round (s*

fpointRealWorld.y) ;

At that time, the transformed fucntion can be rewritten
as follow:

Point
SpatialObject: :Transform(TFPoint
fpointRealiWorld)
{
Point pointResult;
pointResult.x = nScaledX +
dx;
pointResult.y = nScaledY +
cy; .
return pointResult;
}

In this function, we only use two real number
additions, so we have reduced two multiplication and
two steps to round real number. Therefore, the
limitation of processing real numbers are put away.

5. CONCLUSION

We have proposed some methods used to get the good
result in information storage management in order to
increase the speed of rendering maps in Pocket PC and
Windows CE 3.0. These methods, as mentioned, 1ave
showed its advantages in reduction the cost of
manipulation. Our own experiments also showed that
these is efficient in some other embedded devices.
Even if the memory capacity (the object store) of the
Pocket PC has increased recent years, these methods is
also worth to be considered because its ability to
achieve surprisingly high performance.

References

[1] Nicholas R. Chrisman (1997), Exploring Geograshic
Information Systems, University of Washington.

[2] National Air and Space Measum (1998), GPS: A new
constellation’.

[3] Ajenar B Kartika, Singgih Supriyanto, GIS Database
Design and Presentation, IndoMap.

[4] Lé Thuy Anh- Dinh B4 Tién, The traffic guide sys.em,
Bachelor Thesis, Dept of Software Engineering.
University of Natural Sciences, National Universit:/ of
HCM City, Vietnam, 2000.

{5] V& Sy Nam — B3 Lénh Hung Son, Digital Map on
Pocket PC, Bachelor Thesis, Dept of Software
Engineering, University of Natural Sciences, Naticnal
University of HCM City, Vietnam, 2003.

2 http://www.nasm.si.edu/galleries/gps/ 409

