• Title/Summary/Keyword: Center Loss

Search Result 3,753, Processing Time 0.043 seconds

Insertion loss by bubble layer surrounding a spherical elastic shell submerged in water (수중의 구형 탄성 몰수체를 둘러싼 기포층에 의한 삽입손실)

  • Lee, Keunhwa;Lee, Cheolwon;Park, Cheolsoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.174-183
    • /
    • 2022
  • Acoustic radiation from a submerged elastic shell with an internal fluid surrounded by the bubble layer is studied with the modal theory. An omni-directional point source located on the center of the internal fluid is used as acoustic noise source. The unknown coefficients of modal solutions are solved using the interface conditions between media. To preserve the stability of the modal solution over wide frequency ranges, the scaled technique of modal solution is used. The bubble layer is modeled with four kinds of bubble distribution; uni-modal distribution, uniform distribution, normal distribution, and power-law distribution, based on the effective medium theory of Commander and Prosperetti. For each bubble distribution, the insertion losses are mainly calculated for the frequency. In addition, the numerical simulations are performed depending in the bubble void fraction, the material property of elastic shell, and the gap between the bubble layer and the elastic shell.

Effects of endurance training for 4weeks on resting metabolic rate and excess post-exercise oxygen consumption in mouse

  • Jeon, Yerim;Kim, Jisu;Hwang, Hyejung;Lim, Kiwon
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.2
    • /
    • pp.113-122
    • /
    • 2012
  • This study assessed the amount of energy consumed and fat deposition after endurance training in order to review the effect of 4-week endurance exercise on resting metabolic rate of a mouse during and after exercise and the effect of exercise. A total of 19 seven-week-old ICR male mice were used as the study subject. Those mice were divided into sedentary group (Sed) and trained group (Tr) after a week of environment adaption. The Tr group was trained with endurance exercise five times a week for four weeks. Weight and the amount of food intake were daily weighed and resting metabolic rate and metabolic rate after exercise were assessed before starting exercise and on the fourth week after training. Metabolic rate during exercise were measured four weeks after training. At the end of breeding period, statistically significant difference was shown in weights of trained and sedentary groups (p < 0.05). During a resting period, no significant difference was shown in oxygen intake, respiratory exchange ratio, and the amount of carbohydrate and fat oxidized. Moreover, no significant difference was shown in excess post-exercise oxygen consumption (EPOC) of an hour period after training. In contrast, the maximal oxygen uptake (VO2 max) was approximately 11.1% higher in trained group after training compare to before. However, there was no significant difference in respiratory exchange ratio and carbohydrate and fat oxidization. During exercise, oxygen uptake, carbon dioxide production, and respiratory exchange ratio in energy metabolism during exercise showed no significant difference. However, significant difference was exhibited in the amount of fat oxidized in both groups. Summing up those results, endurance exercise could be concluded to be effective in weight control. However, weight loss is thought to be resulted from increase in fat oxidization during exercise unlike the conclusion made from previous studies where weight loss is prominently influenced by energy metabolism during a resting period and increased fat oxidation during post-exercise recovery. All experimental procedures were carried out at the Animal Experiment Research Center of Konkuk University. This study was conducted in accordance with the ethical guidelines of the Konkuk University Institutional Animal Care and Use Committee.

Boeravinone B, a natural rotenoid, inhibits osteoclast differentiation through modulating NF-κB, MAPK and PI3K/Akt signaling pathways

  • Xianyu Piao;Jung-Woo Kim;Moonjung Hyun;Zhao Wang;Suk-Gyun Park;In A Cho;Je-Hwang Ryu;Bin-Na Lee;Ju Han Song;Jeong-Tae Koh
    • BMB Reports
    • /
    • v.56 no.10
    • /
    • pp.545-550
    • /
    • 2023
  • Osteoporosis is a major public health concern, which requires novel therapeutic strategies to prevent or mitigate bone loss. Natural compounds have attracted attention as potential therapeutic agents due to their safety and efficacy. In this study, we investigated the regulatory activities of boeravinone B (BOB), a natural rotenoid isolated from the medicinal plant Boerhavia diffusa, on the differentiation of osteoclasts and mesenchymal stem cells (MSCs), the two main cell components responsible for bone remodeling. We found that BOB inhibited osteoclast differentiation and function, as determined by TRAP staining and pit formation assay, with no significant cytotoxicity. Furthermore, our results showing that BOB ameliorates ovariectomy-induced bone loss demonstrated that BOB is also effective in vivo. BOB exerted its inhibitory effects on osteoclastogenesis by downregulating the RANKL/RANK signaling pathways, including NF-κB, MAPK, and PI3K/Akt, resulting in the suppression of osteoclast-specific gene expression. Further experiments revealed that, at least phenomenologically, BOB promotes osteoblast differentiation of bone marrow-derived MSCs but inhibits their differentiation into adipocytes. In conclusion, our study demonstrates that BOB inhibits osteoclastogenesis and promotes osteoblastogenesis in vitro by regulating various signaling pathways. These findings suggest that BOB has potential value as a novel therapeutic agent for the prevention and treatment of osteoporosis.

The Dome Technique for Managing Massive Anterosuperior Medial Acetabular Bone Loss in Revision Total Hip Arthroplasty: Short-Term Outcomes

  • Tyler J. Humphrey;Colin M. Baker;Paul M. Courtney;Wayne G. Paprosky;Hany S. Bedair;Neil P. Sheth;Christopher M. Melnic
    • Hip & pelvis
    • /
    • v.35 no.2
    • /
    • pp.122-132
    • /
    • 2023
  • Purpose: The dome technique is a technique used in performance of revision total hip arthroplasty (THA) involving intraoperative joining of two porous metal acetabular augments to fill a massive anterosuperior medial acetabular bone defect. While excellent outcomes were achieved using this surgical technique in a series of three cases, short-term results have not been reported. We hypothesized that excellent short-term clinical and patient reported outcomes could be achieved with use of the dome technique. Materials and Methods: A multicenter case series was conducted for evaluation of patients who underwent revision THA using the dome technique for management of Paprosky 3B anterosuperior medial acetabular bone loss from 2013-2019 with a minimum clinical follow-up period of two years. Twelve cases in 12 patients were identified. Baseline demographics, intraoperative variables, surgical outcomes, and patient reported outcomes were acquired. Results: The implant survivorship was 91% with component failure requiring re-revision in only one patient at a mean follow-up period of 36.2 months (range, 24-72 months). Three patients (25.0%) experienced complications, including re-revision for component failure, inter-prosthetic dual-mobility dissociation, and periprosthetic joint infection. Of seven patients who completed the HOOS, JR (hip disability and osteoarthritis outcome score, joint replacement) survey, five patients showed improvement. Conclusion: Excellent outcomes can be achieved using the dome technique for management of massive anterosuperior medial acetabular defects in revision THA with survivorship of 91% at a mean follow-up period of three years. Conduct of future studies will be required in order to evaluate mid- to long-term outcomes for this technique.

A review on the risk, prevention and control of cooling water intake blockage in coastal nuclear power plants

  • Heshan Lin;Shuyi Zhang;Ranran Cao;Shihao Yu;Wei Bai;Rongyong Zhang;Jia Yang;Li Dai;Jianxin Chen;Yu Zhang;Hongni Xu;Kun Liu;Xinke Zhang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.389-401
    • /
    • 2024
  • In recent decades, numerous instances of blockages have been reported in coastal nuclear power plants globally, leading to serious safety accidents such as power reduction, manual or automatic power loss, or shutdown of nuclear power units. Loss or shortage of cooling water may compromise the reliability of the cooling water system, thus threatening the operational safety of power plants and resulting in revenue reduction. This study provides a comprehensive review of the current state of cooling water system safety in coastal nuclear power plants worldwide and the common challenges they face, as well as the relevant research on cooling water system safety issues. The research overview and progress in investigation methods, outbreak mechanisms, prevention and control measures, and practical cases of blockages were summarized. Despite existing research, there are still many shortcomings regarding the pertinence, comprehensiveness and prospects of related research, and many problems urgently need to be solved. The most fundamental concern involves understanding the list of potential risks of blockages and their spatially distributed effects in surrounding waters. Furthermore, knowledge of the biological cycles and ecological habits of key organisms is essential for implementing risk prevention and control and for building a scientific and effective monitoring system.

Realization of Waveguide Filter Using 3D Printing and Electroplating Process (3D 프린팅과 도금 공정을 이용한 도파관 필터 구현)

  • Tae-Soon Yun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.927-932
    • /
    • 2024
  • In this paper, the waveguide filter is realized by using the 3D printing and electroplating process. The waveguide filter is consisted of the resonator and the inductive window. The resonator is made small by putting vertical pillar inside the cavity. In case of in/output, the pin of SMA connector is connected to the pillar using the tapped-line method. Designed filter has the volume of 24.0 x 58.0 x 38.0 mm3 that is about 91% reduced compared to general cavity filter. Designed filter is modeled divided into upper part that has the inductive window and lower part that has the pillar. Printed filter by the ABS plastic is plated with 10㎛ thick copper over nickel electrodes. Fabricated filter is measured with the center frequency of 2.397GHz and bandwidth of 4.76%. Also, the insertion loss of filter has 0.15dB and return loss is shown under the 20dB. Suggested waveguide filter with pillar and manufacturing process allows the waveguide devices to be made small, lightweight, and low-cost and can be applied to various RF system.

Design of a Polarization-Switching Patch Antenna Using Parasitic Elements (기생소자를 이용한 편파 전환 패치 안테나 설계)

  • Won Jun Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.5
    • /
    • pp.720-725
    • /
    • 2024
  • In this paper, we propose a microstrip patch antenna with polarization-switching characteristics using parasitic elements and PIN diodes placed at the sides of the microstrip patch. The proposed antenna is designed by arranging four linear parasitic elements along the sides of a square-shaped microstrip patch, with each parasitic element connected to a PIN diode. By utilizing the open and short circuit characteristics of the PIN diodes based on the applied bias, the electrical length of the parasitic element slots is altered, enabling polarization switching between right-hand circular polarization (RHCP) and left-hand circular polarization (LHCP). The proposed antenna resonates at 4.21 GHz, with a return loss of 17.5 dB and a bandwidth of 135 MHz when operating in RHCP mode, and a return loss of 18.4 dB and a bandwidth of 144 MHz when operating in LHCP mode. Additionally, the axial ratios for RHCP and LHCP are 2.53 dB and 2.52 dB, respectively, and the gains are 6.62 dBic and 6.32 dBic, respectively.

Influence of Tightening Torque on Implant-Abutment Screw Joint Stability (조임회전력이 임플랜트-지대주 나사 연결부의 안정성에 미치는 영향)

  • Shin, Hyon-Mo;Jeong, Chang-Mo;Jeon, Yonung-Chan;Yun, Mi-Jeong;Yoon, Ji-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.396-408
    • /
    • 2008
  • Statement of problem: Within the elastic limit of the screw, the greater the preload, the tighter and more secure the screw joint. However, additional tensile forces can incur plastic deformation of the abutment screw when functional loads are superimposed on preload stresses, and they can elicit the loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum preload that will maximize fatigue life and simultaneously offer a reasonable degree of protection against loosening. Another critical factor in addition to the applied torque which can affect the amount of preload is the joint connection type between implant and abutment. Purpose: The purpose of this study was to evaluate the influence of tightening torque on the implant-abutment screw joint stability. Material and methods: Respectively, three different amount of tightening torque (20, 30, and 40 Ncm) were applied to implant systems with three different joint connections, one external butt joint and two internal cones. The initial removal torque value and the postload (cyclic loading up to 100,000 cycles) removal torque value of the abutment screw were measured with digital torque gauge. Then rate of the initial and the postload removal torque loss were calculated for the comparison of the effect of tightening torques and joint connection types between implant and abutment on the joint stability. Results and conclusion: 1. Increase in tightening torque value resulted in significant increase in initial and postload removal torque value in all implant systems (P < .05). 2. Initial removal torque loss rates in SS II system were not significantly different when three different tightening torque values were applied (P > .05), however GS II and US II systems exhibited significantly lower loss rates with 40 Ncm torque value than with 20 Ncm (P < .05). 3. In all implant systems, postload removal torque loss rates were lowest when the torque value of 30 Ncm was applied (P < .05). 4. Postload removal torque loss rates tended to increase in order of SS II, GS II and US II system. 5. There was no correlation between initial removal torque value and postload removal torque loss rate (P > .05).

The Surgical Outcome for Gastric Submucosal Tumors: Laparoscopy vs. Open Surgery (위 점막하 종양에 대한 개복 및 복강경 위 절제술의 비교)

  • Lim, Chai-Sun;Lee, Sang-Lim;Park, Jong-Min;Jin, Sung-Ho;Jung, In-Ho;Cho, Young-Kwan;Han, Sang-Uk
    • Journal of Gastric Cancer
    • /
    • v.8 no.4
    • /
    • pp.225-231
    • /
    • 2008
  • Purpose: Laparoscopic gastric resection (LGR) is increasingly being used instead of open gastric resection (OGR) as the standard surgical treatment for gastric submucosal tumors. Yet there are few reports on which technique shows better postoperative outcomes. This study was performed to compare these two treatment modalities for gastric submucosal tumors by evaluating the postoperative outcomes. We also provide an analysis of the learning curve for LGR. Materials and Methods: Between 2003.4 and 2008.8, 103 patients with a gastric submucosal tumor underwent either LGR (N=78) or OGR (n=25). A retrospective review was performed on a prospectively obtained database of 103 patients. We reviewed the data with regard to the operative time, the blood loss during the operation, the time to the first soft diet, the postoperative hospital stay, the tumor size and the tumor location. Results: The clinicopatholgic and tumor characteristics of the patients were similar for both groups. There was no open conversion in the LGR group. The mean operation time and the bleeding loss were not different between the LGR group and the OWR group. The time to first soft diet (3.27 vs. 6.16 days, P<0.001) and the length of the postoperative hospital stay (7.37 vs. 8.88 days, P=0.002) were shorter in the LGR group compared to the OGR group. The tumor size was bigger in the OGR group than that in the LGR group (6.44 vs. 3.65 cm, P<0.001). When performing laparoscopic gastric resection of gastric SMT, the surgeon was able to decrease the operation time and bleeding loss with gaining more experience. We separated the total cases into 3 periods to compare the operation time, the bleeding losses and the complications. The third period showed the shortest operation time, the least bleeding loss and the fewest complications. Conclusion: LGR for treating a gastric submucosal tumor was superior to OGR in terms of the postoperative outcomes. An operator needs some experience to perform a complete laparoscopic gastric resection. Laparoscopic resection could be considered the first-line treatment for gastric submucosal tumors.

  • PDF

Analysis of the influence of existing parallel tunnels according to the location of the new tunnel (신설터널의 위치에 따른 기존 병렬터널의 영향 분석)

  • Yun, Ji-Seok;Kim, Han-Eol;Nam, Kyoung-Min;Jung, Ye-Rim;Cho, Jae-Eun;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.193-215
    • /
    • 2022
  • Recently, ground structures have reached saturation, and underground construction using underground structures such as tunnels has been in the spotlight as a way to solve increasing traffic difficulties and environmental problems. However, due to the increasing number of underground structures, close construction is inevitable for continuous underground development. When a new underground structure is constructed closely, stability may become weak due to the influence on the existing tunnel, which may cause collapse. Therefore, analyzing the stability of existing tunnels due to new structures is an essential consideration. In this study, the effect of excavating new tunnels under parallel tunnels on existing parallel tunnels was analyzed using numerical analysis. Using the Displacement Control Model (DCM), the volume loss generated during construction was simulated into three case (0.5%, 1.0%, and 1.5%). Based on the center of the pillar, the distance where the new tunnel is located was set to 5 m, 6 m, 7 m, 8 m, 9 m, and the space for each distance were set to 5 (0D1, 0.37D1, 0.75D1, 1.13D1, 1.5D1). In general, as the volume loss increased and the distance approached, the maximum displacement and angular displacement increased, and the strength/stress ratio to evaluate the stability of the pillar also decreased. As a result, when the distance between the new tunnel and the center of the pillar is 5 m, the space is 0D1, and the volume loss is 1.5%, the stability of the existing parallel tunnel is the weakest.