• Title/Summary/Keyword: Cement Weight

Search Result 750, Processing Time 0.019 seconds

An Experimental Study on the Mechanical Properties of Fiber Reinforced Cement Composites Utilizing by-Products(II) (산업부산물을 활용한 섬유보강 시멘트 복합체의 역학적 특성에 관한 실험적 연구(II))

  • 박승범;윤의식;조청휘
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.144-149
    • /
    • 1993
  • The results of an experimental study on the manufacture and the mechanical properties of carbon fiber reinforced silica fume.cement composites and light weight fly ash.cement composites are presented in this paper. The CF reinforced silica fume.cement composites using silica fume early strength cement were prepared with Pan-derived or Pitch-derived CF, and Lt. Wt, fly ash.cement composites using fly ash, early strength cement, perlite and a small amount of foaming agent. As the test results show, the flexural strength, toughness and ductility of CF reinforced silica fume .cement composites were remarkably increased by fiber contents. Also, the manufacturing process technology of Lt. Wt. fly ash.cement composites was developed and its optimum mix proportions were proposed. And the compressive and flexural strength of the fly ash.cement composites by hot water cured were improved even more than by moist cured, but are decreased by increasing fly ash replaced ratio for cement.

  • PDF

A Study on the Water Permeability and Drying Shrinkage of Polymer Cement Composites (폴리머 시멘트 복합체의 투수성 및 건조수축에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.71-77
    • /
    • 2009
  • In a range of forms, such as latex, water-soluble polymer, liquid resin, and monomer, polymer dispersions have been widely used in the construction industry as cement modifiers because of their excellent properties, such as acid-resistance, water-proofness, and good ductility in mortar and concrete. Polymer cement slurry (polymer-modified slurry) is made of cement and polymer dispersions, with a high polymer-cement ratio of 50% or more. The purpose of this study is to evaluate the water permeability and drying shrinkage of polymer cement mortar (polymer-modified mortar) and cement concrete coated by polymer cement slurry. The polymer cement mortar and cement concrete are prepared with various polymer types, polymer-cement ratios and curing methods, and are tested for water permeability, drying shrinkage and strength. The test results showed thatthe weight of permeable water of polymer cement mortar decreases with an increase in the polymer-cement ratio, reaching a minimum at the polymer-cement ratio of 20%. In particular, the weight of permeable water of St/BA-modified mortar with a polymer-cement ratio of 20% coated with St/BA-modified slurry is about 1/55 that of unmodified mortar. The EVA- and St/BA-modified slurries coated on cement concrete have about 4 or 5 times higher drying shrinkage compared to cement concrete. The strength of polymer cement mortars tends to increase with a higher polymer-cement ratio, and is considerably higher than that of unmodified mortar. It is thus concluded that polymer cement mortars coated by polymer cement slurry are effective for industrial application, and have superior properties such as waterproofness and strengths, compared with conventional cement mortar.

A Study on the Heat Resistance of Light-Weight Polymer Concrete Composites (경량 폴리머 콘크리트 복합체의 내열성능에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.6
    • /
    • pp.131-137
    • /
    • 2008
  • In recent years, the light-weight aggregate has widely been used to reduce the weight of construction structures, and to achieve the thermal insulation of building structures. The purpose of this study is to evaluate the heat resistance of polymer concrete composites with light-weight aggregate made by binders as resin and cement with polymer dispersion. The light-weight polymer concrete composites are prepared with various conditions such as binder content, filler content, void-filling ratio, light-weight aggregate content and polymer-cement ratio, and tested for heat resistant test, and measured the weight reducing ratio, strengths and exhaustion content of gas such as CO, NO and $SO_2$. From the test results, the weight reducing ratio of light weight polymer concrete using UP binder after heat resistance test increase with an increase in the UP content irrespective of the filler content. The weight reducing ratio of polymer cement concrete is considerably smaller than that of UP concrete. In general, the strengths after heat resistance of polymer concrete composites are reduced about 40 to 65% compared with those before test. The exhausted quantity of CO, NO and $SO_2$ gases in polymer concrete composites is less than EPS(Expanded poly styrene). From the this study, it is confirmed that the many types gases discharge according to binder type of polymer concrete composites, its amount is controlled by selection of the binder type and mix proportions.

Effect of Mix Proportions on the Permeability and Mechanical Properties of Polymer Cement Concrete (폴리머 시멘트 콘크리트의 배합조건이 투수성능과 역학적 성질에 미치는 영향)

  • 박응모;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.356-361
    • /
    • 1998
  • Permeable polymer cement concrete in this study is one of the invironment conscious concretes that can be applied at roads, side walks, parking lots, interlocking block and river embankment, etc. In this study, permeable polymer cement concretes using polymer dispersion(St/Ac) with water-cement ratios of 25, 30, 35 and 40%, polymer-cement ratios of 0, 5, 10, 15 and 20%, and a ratio of cement to aggregate (by weight), 1 : 3.5(about 415kg/㎥), 1 : 4.0(about 375 kg/㎥), and 1 : 4.5(about 345kg/㎥) are prepared, and tested for compressive, flexural and tensile strength, and permeability. From the test results, increase in the strengths of permeable polymer cement concrete are clearly observed with increasing polymer-cement ratio, we can obtain the maximum strengths at water-cement ratio of 35%. The optimum permeable polymer cement concrete according to application and location of work can be selected in various mix proportions.

  • PDF

Effect of cement stabilization on geotechnical properties of sandy soils

  • Shooshpasha, Issa;Shirvani, Reza Alijani
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.17-31
    • /
    • 2015
  • An experimental program was performed to study the effects of cement stabilization on the geotechnical characteristics of sandy soils. Stabilizing agent included lime Portland cement, and was added in percentages of 2.5, 5 and 7.5% by dry weight of the soils. An analysis of the mechanical behavior of the soil is performed from the interpretation of results from unconfined compression tests and direct shear tests. Cylindrical and cube samples were prepared at optimum moisture content and maximum dry unit weight for unconfined compression and direct shear tests, respectively. Samples were cured for 7, 14 and 28 days after which they were tested. Based on the experimental investigations, the utilization of cemented specimens increased strength parameters, reduced displacement at failure, and changed soil behavior to a noticeable brittle behavior.

Application of Artificial Neural Network Theory for Evaluation of Unconfined Compression Strength of Deep Cement Mixing Treated Soil (심층혼합처리된 개량토의 일축압축강도 추정을 위한 인공신경망의 적용)

  • Kim, Young-Sang;Jeong, Hyun-Chel;Huh, Jung-Won;Jeong, Gyeong-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1159-1164
    • /
    • 2006
  • In this paper an artificial neural network model is developed to estimate the unconfined compression strength of Deep Cement Mixing(DCM) treated soil. A database which consists of a number of unconfined compression test result compiled from 9 clay sites is used to train and test of the artificial neural network model. Developed neural network model requires water content of soil, unit weight of soil, passing percent of #200 sieve, weight of cement, w-c ratio as input variables. It is found that the developed artificial neural network model can predict more precise and reliable unconfined compression strength than the conventional empirical models.

  • PDF

Property of Thermal Conductivity of Light Weight Panel Core Using Light-Weight Aggregate (인공경량골재를 이용한 경량패널 심재의 열전도 특성)

  • 이정국;도정윤;문경주;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.131-136
    • /
    • 2002
  • In recent year, it has been investigated on the reduction of mass of structures for the purpose of the larger space and the economy with the industry developing very fast and qualitatively. So the purpose of this study is to investigate the manufacture of light weight concrete panel using the artificial light-weight aggregate as a part of the substitution of foamed styrene and polyurethane because of narrow allocable temperature zone in use. The compressive strength, flexural strength, unit weight, absorption test and thermal conductivity were practised at 3, 7 and 28 days after manufacturing the light-weight concrete lot the panel core: the filling ratio of continuous void was defied as 40%, 50%, and 60% and water-cement rate was 35, 40 and 45%. As a result of this, it was revealed that the mixture derived from filling ration of void of 50% and water-cement ratio 40% were developing the best properties of the others.

  • PDF

An Experimental Study on the Quality Characteristics of Ordinary Portland Cement in Domestic Market (국내 보통 포틀랜드 시멘트의 품질특성에 관한 실험적 연구)

  • 배수호;윤상대;박광수;신의균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.14-18
    • /
    • 1995
  • Since cement is one of materials of concrete and have an important effect upon physical properties of concrete, the quality characteristics of ordinary portland cement in domestic market are evaluated in this study. For this purpose, eight kinds of cement are selected and tested on the specific gravity, normal consistency, setting time, fincness, and compressive strength of cement ranged from 300kg/$\textrm{m}^3$ to 600kg/$\textrm{m}^3$ are tested for each kind of cement. As a result,ordinary portland cement in domestic market are satisfied with physical performance prescribed by KS L 5201(Portland Cement) and when unit weight of cement is 300~600kg/$\textrm{m}^3$, the maximum compressive strength of concrete cylinder is showed to be about 440-540kgf/$\textrm{cm}^2$.

  • PDF

The Properties of OPC-Slag Cement Mixed with Nano-Silica Solution by Mixing Water Weight Replacement Method (나노실리카 졸을 배합수 중량치환 방법으로 혼합한 OPC-slag cement의 특성)

  • Seo, Ki-Young;Kim, Taewan;Kim, Seong-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.24-34
    • /
    • 2020
  • This research is a study on the characteristics of OPC-slag cement using nano-silica solution (NSS) with water-weight substitution method. The new replacement method is a fundamental step to study the behavior of cement with higher NSS replacement rates than previous studies. NSS was replaced by 10%, 20%, 30%, 40%, and 50% of the mixing water weight. As a result, the mechanical and microstructural characteristics were improved. This can be summarized in two ways. First, when the NSS is replaced with mixing water, the homogeneous dispersion action of the nano-silica particles is improved. This promotes initial hydration. Second, substitution of NSS with higher density than mixing water reduces w / b. This forms a dense hydration reaction material. The new substitution method did not show any degradation of mechanical and microstructural properties as compared with the results using the powdered nano-silica particles revealed in the previous study. Therefore, it is considered that the method of weight substitution of NSS used in this study can be applied to the formulation of OPC-slag cement.

Thermal Insulation and Flame Retardant Properties of Cement Based Super Light-weight Inorganic Thermal Insulation using 100㎛ Grade Glass Bubble (100㎛급 글라스 버블 혼입 시멘트계 초경량 무기 단열재의 단열 및 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.642-649
    • /
    • 2021
  • Energy saving standard for buildings are strengthened, the application of exterior insulation finishing system and thickness of insulation materials are increasing. Most buildings with exterior insulation finishing system is applied organic insulating material. Organic insulating material have workability, economic feasibility, reduction in construction cost, and excellent thermal insulation performance. However, Organic insulating material is very vulnerable to heat, so when a fire occurs, rapid fire spread and toxic gas are generated, causing many casualties. Inorganic insulating material can be non-combustible performance, but it is heavy and has low thermal insulation performance. Mineral wool has higher thermal insulation performance than other types of inorganic insulating material, but mineral wool is disadvantageous to workability and vulnerable to moisture. Glass bubble are highly resistant to water and chemically stable substances. In addition, the density of the glass bubble is very low and the particles are spherical, fluidity is improved by the ball bearing effect. Glass bubbles can be used with cement-based ino rganic insulating material to impro ve the weight and thermal insulatio n perfo rmance o f cement-based inorganic insulation. This study produced a inorganic insulating materials were manufactured using cement-based materials and glass bubble. In order to evaluate the insulation performance and flame retardant performance of cement-based super light-weight inorganic insulating materials using with glass bubble, insulation performance or flame retardant and non-combustible performance were evaluated after manufacturing insulating materials using micro cement and two types of glass bubbles. From the test result, Increasing the mixing ratio of glass bubbles improved the insulation performance of cement-based super light-weight inorganic insulating materials, and when the mixing ratio of glass bubbles was 10%, it sho wed sufficient flame retardant and no n-co mbustible perfo rmance.