• Title/Summary/Keyword: Cellulose Acetate

Search Result 251, Processing Time 0.028 seconds

Properties of Cellulose Acetate and Polyethylene Composite Film

  • Hwang, Kweon-Hwan;Lee, Won-Hee;Lim, Bu-Kug
    • Journal of the Korea Furniture Society
    • /
    • v.18 no.4
    • /
    • pp.268-274
    • /
    • 2007
  • Environmentally-friendly polymer composite films were manufactured from cellulose acetate (CA) and polyethylene (PE). To investigate the optimum manufacturing conditions for the composite, various tests such as thermal analysis, surface observation, IR spectra analysis, and elongation ratio of polymer composite films were carried out. The mixing ratio of each element and manufacture condition was found to be very important for the best goods.

  • PDF

Preparation of Cellulose Nanoparticles Loaded with Vitamin E Acetate (비타민 E 아세테이트가 봉입된 셀룰로오스 나노입자의 제조)

  • 남다은;정택규;김승수;신채호;신병철
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.128-134
    • /
    • 2004
  • Cellulose nanoparticles loaded with vitamin I acetate were prepared by modified spantaneous emulsification solvent diffusion method. After cellulose derivatives were dissolved in mixed acetone/ethanol organic solvent with vitamin E acetate, cellulose nanoparticle suspensions were dispersed in poly(oxyethylene sorbitane monooleate) solution using ultrasonicator. Particle size and loading amount of vitamin I acetate were measured by particle size analyser and UV-spectrometer, respectively. The stability of nanoparticle was determined by measuring the change of the particle size at room temperature for 30 days and the morphology was observed by SEM. Morphology of cellulose nanoparticles was spherical and particle size was not changed at room temperature for 30 days. The optimum condition for the preparation of cellulose nanoparticles was 1% w/v cellulose nitrate with 8% w/v poly(oxyethylene sorbitane monooleate) solution. It showed that particle size and loading amount of vitamin E acetate was 65nm and 71%, respectively.

Machinability Evaluation and Cutting Condition Selection of Cellulose Acetate for Manufacturing of High-quality Spectacle Frames (고품위 안경테 제작을 위한 안경테 소재(Cellulose Acetate)의 가공성 평가 및 절삭조건 선정)

  • Kang, Ik-Soo;Lee, Seung-Yong;Choi, Hyun-Jin;Lee, Tae-Ho;Choi, Sung-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.20-24
    • /
    • 2012
  • The objective of this study is to investigate proper cutting conditions of cellulose acetate(CA) for eyewear frames. Various cutting experiments with variation of spindle speeds and feed rates are conducted to evaluate the machinability of CA. The machinability of CA materials were discussed in terms of the cutting forces, surface roughnesses and chip formations. The cutting conditions of high spindle speeds and the feed per tooth of less than 0.05mm are recommended considering the surface roughnesses and chip formations. Also, the correlation between the surface roughness and the chip formation is investigated. These results are able to be applied to design the high-speed machine tool of CA frame.

Preparation and Electrical Properties of Conducting Cellulose Acetate/Polypyrrole Composites (전도성 Cellulose Acetate/Polypyrrole 복합체의 제조와 전기적 성질)

  • Park, Yun-Heum;Bang, Ho-Joo
    • Textile Coloration and Finishing
    • /
    • v.2 no.1
    • /
    • pp.31-36
    • /
    • 1990
  • The electrically conducting cellulose acetate/polypyrrole composite films were synthesized by exposing cellulose acetate film containing oxidizing agent to pyrrole vapour and the formation of polypyrrole is confirmed by IR and electron microscopic studies. The morphologies of polypyrrole in the composites are different depending on the oxidizing agent. Ferric chloride is most effective among several metallic chlorides to synthesize the composites with high electrical conductivity. The conductivity of composite films synthesized with 50 wt.% of ferric chloride reaches upto $10^{-2}S/cm$.

  • PDF

Preparation and Characteristics of Cellulose Acetate Based Nanocomposites Reinforced with Cellulose Nanocrystals (CNCs) (셀룰로오스 나노크리스탈 강화 셀룰로오스 아세테이트 나노복합소재 제조 및 특성)

  • Gwon, Jae-Gyoung;Lee, Dan-Bee;Cho, Hye-Jung;Lee, Sun-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.565-576
    • /
    • 2018
  • Cellulose acetate (CA) has been widely utilized for composite materials due to its high transparency and thermal resistance. In this study, CNCs (cellulose nanocrystals) were reinforced in CA nanocomposites for fortifying mechanical properties of the composites. In addition, CA nanocomposites reinforced with CNCs were manufactured by extrusion/injection processes applied with CNC-predispersion method for achieving a high dispersion level of CNCs in the CA matrix. According to the analysis of mechanical properties, the CA nanocomposite with 3 wt% CNCs has the highest tensile and flexural strengths due to the reinforcing effect of CNC nanoparticles. Thermogravimetric analysis (TGA) showed that the addition of acid hydrolyzed CNCs slightly lowered the initial pyrolysis temperature of CA nanocomposite.

Preparation of Regenerated Cellulose Fiber via Carbonation. I. Carbonation and Dissolution in an Aqueous NaOH Solution

  • Oh, Sang Youn;Yoo, Dong Il;Shin, Younsook;Lee, Wha Seop;Jo, Seong Mu
    • Fibers and Polymers
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • Cellulose carbonate was prepared by the reaction of cellulose pulp and $CO_2$ with treatment reagents, such as aqueous $Zncl_2$ (20-40 wt%) solution, acetone or ethyl acetate, at -5-$0^{\circ}C$ and 30-40 bar ($CO_2$) for 2 hr. Among the treatment reagents, ethyl acetate was the most effective. Cellulose carbonate was dissolved in 10% sodium hydroxide solution containing zinc oxide up to 3 wt% at -5-$0^{\circ}C$. Intrinsic viscosities of raw cellulose and cellulose carbonate were measured with an Ubbelohde viscometer using 0.5 M cupriethylenediamine hydroxide (cuen) as a solvent at $20^{\circ}C$ according to ASTM D1795 method. The molecular weight of cellulose was rarely changed by carbonation. Solubility of cellulose carbonate was tested by optical microscopic observation, UV absorbance and viscosity measurement. Phase diagram of cellulose carbonate was obtained by combining the results of solubility evaluation. Maximum concentration of cellulose carbonate for soluble zone was increased with increasing zinc oxide content. Cellulose carbonate solution in good soluble zone was transparent and showed the lowest absorbance and the highest viscosity. The cellulose carbonate and its solution were stable in refrigerator (-$5^{\circ}C$ and atmospheric pressure).

Fabrication of the micro-mold and nanofiber using cellulose solution (셀룰로오스를 이용한 마이크로 몰드 및 나노섬유 제작)

  • Cho, Ki-Youn;Lim, Hyun-Kyu;Kang, Kwang-Sun;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.69-72
    • /
    • 2007
  • Cellulose is a beneficial material that has low cost, lightweight, high compatibility and biodegradability. Recently electroactive paper (EAPap) on cellulose base was discovered as a smart material and actuator through ion migration and piezoelectric effect. Furthermore cellulose has a potentiality to apply the display material, because of its high reflectivity, flexibility and high transmittance. The various shapes and height patterns of the Cellulose acetate (CA) solution, such as circle and honeycomb patterns, were fabricated and observed by field emission scanning electron microscope (FESEM, S4300 Hitachi). The resulting pattern showed uniform size in the large area without defect. After stretching the CA film with saponification process in the sodium methoxide in methanol solution, Most of the compositions become one directional ordered nanofibers below 50nm.

  • PDF