Preparation of Cellulose Nanoparticles Loaded with Vitamin E Acetate

비타민 E 아세테이트가 봉입된 셀룰로오스 나노입자의 제조

  • 남다은 (충북대학교 화학공학과) ;
  • 정택규 (한국화학연구원 화학소재부) ;
  • 김승수 (한국화학연구원 화학소재부) ;
  • 신채호 (충북대학교 화학공학과) ;
  • 신병철 (한국화학연구원 화학소재부)
  • Published : 2004.03.01

Abstract

Cellulose nanoparticles loaded with vitamin I acetate were prepared by modified spantaneous emulsification solvent diffusion method. After cellulose derivatives were dissolved in mixed acetone/ethanol organic solvent with vitamin E acetate, cellulose nanoparticle suspensions were dispersed in poly(oxyethylene sorbitane monooleate) solution using ultrasonicator. Particle size and loading amount of vitamin I acetate were measured by particle size analyser and UV-spectrometer, respectively. The stability of nanoparticle was determined by measuring the change of the particle size at room temperature for 30 days and the morphology was observed by SEM. Morphology of cellulose nanoparticles was spherical and particle size was not changed at room temperature for 30 days. The optimum condition for the preparation of cellulose nanoparticles was 1% w/v cellulose nitrate with 8% w/v poly(oxyethylene sorbitane monooleate) solution. It showed that particle size and loading amount of vitamin E acetate was 65nm and 71%, respectively.

비타민E 아세테이트를 봉입하고 있는 셀룰로오스 나노입자는 개선된 자발적 유화확산 방법을 이용하여 제조하였다. 셀룰로오스 나노입지는 셀룰로오스 유도체와 비타민E 아세테이트를 아세톤/에탄올 혼합유기 용매로 용해한 다음 초음파 발생장치를 이용하여 폴리(옥시에틸렌 솔비탄 모노올레이트) 용액에 분산하여 제조하였다. 입자크기와 비타민 E 아세테이트의 봉입률은 광산란 장치와 UV 분광계를 이용하여 각각 측정하였다. 나노입자의 안정성은 상온에서 30일간 입자크기 변화를 통해 비교하였고 입자의 형태는 주사전자 현미경을 통해 관찰하였다. 결과적으로 제조된 나노입자의 형태는 구형인 것을 관찰하였고, 상온에서 30일간 입자크기 변화가 없었다. 가장 좋은 셀룰로오스 나노입자의 제조 조건은 1% w/v 니트로셀룰로오스와 8% w/v 폴리(옥시에틸렌 솔비탄 모노올레이트)를 사용하였을 경우이고, 이때 나노입자의 크기는 65nm, 비타민E 아세테이트의 봉입률은 71%의 값을 나타내었다.

Keywords

References

  1. Polymer(Korea) v.27 T.K.Jung;Y.M.Oh;B.C.Shin
  2. Bull. Korean Chem. Soc. v.23 Y.I.Jeong;Y.H.Shim;K.C.Song;Y.G.Park;H.W.Ryu;J.W.Nah https://doi.org/10.5012/bkcs.2002.23.11.1579
  3. Int. J. Pharm. v.143 D.Quintanar-Guerrero;H.Fessi;E.Allemann;E.Doelker https://doi.org/10.1016/S0378-5173(96)04697-2
  4. Polymer Sci. Tech.(Korea) v.14 B.C.Shin;S.H.Cho;M.S.Kim
  5. J. Control. Rel. v.25 T.Niwa;H.Takeuchi;T.Hino;N.Kunou;Y.Kawashima https://doi.org/10.1016/0168-3659(93)90097-O
  6. Int. J. Pharm. v.55 H.Fessi;F.Puisieux;J.P.Devissaguet;N.Ammoury;S.Benita https://doi.org/10.1016/0378-5173(89)90281-0
  7. STP Pham. Sci. v.5 M.O.Omelozuk;J.W.Mcginity
  8. Int. J. Pharm. v.187 H.Murakami;M.Kobayashi;H.Takeuchi;Y.Kawashima https://doi.org/10.1016/S0378-5173(99)00187-8
  9. Powder Tech. v.107 H.Murakami;M.Kobayashi;H.Takeuchi;Y.Kawashima https://doi.org/10.1016/S0032-5910(99)00182-5
  10. Int. J. Pharm. v.149 H.Murakami;Y.Kawashima;T.Niwa;T.Hino;H.Takeuchi;M.Kobayashi https://doi.org/10.1016/S0378-5173(96)04854-5
  11. Biomaterials v.17 M.Fresta;G.Cavallaro;G.Giammona;E.Wehrile;G.Puglisi https://doi.org/10.1016/0142-9612(96)81411-6
  12. J. Control. Rel. v.57 T.Govender;S.Stolnik;M.C.Ganett;L.Illum;S.S.Davis https://doi.org/10.1016/S0168-3659(98)00116-3
  13. Polymer Sci. Tech.(Korea) v.12 T.G.Park;H.S.Yoo
  14. J. Control. Rel. v.50 M.F.Zambaux;F.Bonneaux;R.Gref;P.Maincent;E.Dellacherie;M.J.Alonso;P.Labrude;C.Vigneron https://doi.org/10.1016/S0168-3659(97)00106-5
  15. Int. J. Pharm. v.43 R.Bodmeier;J.W.McGinity https://doi.org/10.1016/0378-5173(88)90073-7
  16. Eur. J. Pharm. Biopharm. v.41 P.Wehrle;B.Magenheim;S.Benita
  17. Int. J. Pharm. v.87 E.Allemann;R.Gurny;E.Doelker https://doi.org/10.1016/0378-5173(92)90249-2
  18. Pharm. Res. v.10 E.Allemann;J.C.Leroux;R.Gumy;E.Doelker https://doi.org/10.1023/A:1018970030327
  19. Eur. J. Pharm. Biopharm. v.41 J.C.Leroux;E.Allemann;E.Doelker;R.Gurny
  20. J. Microencapsulation v.15 G.D.Quintanar;Q.A.Ganem;E.Allemann;H.Fessi;E.Doelker https://doi.org/10.3109/02652049809006840
  21. Colloid Surface v.182 H.Y.Kwon;J.Y.Lee;S.W.Chio;Y.S.Jang;J.H.Kim https://doi.org/10.1016/S0927-7757(00)00825-6
  22. Polymer(Korea) v.26 S.J.Park;S.H.Kim;J.R.Lee;H.B.Lee;S.K.Hong