• Title/Summary/Keyword: Cellular proliferation

Search Result 1,030, Processing Time 0.026 seconds

Anti-proliferation Effect of Damina 909 on Pancreatic Cancer Cells in Tumor-Xenografted Nude Mice Model

  • Kim, Yu-Ri;Lee, Seung-Min;Seo, Sang-Hui;Lee, Seung-Ho;Kim, In-Kyoung;Jun, Hwang-Jeok;Nam, Jong-Hyun;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.1
    • /
    • pp.7-13
    • /
    • 2009
  • In this study, we investigated the anti-proliferative effect of Damina 909 in human cancer cell lines and tumor-xenografted nude mice to elucidate its potential in treating many cancers. Damina 909 treatment resulted in inhibition of cell proliferation of human pancreatic cancer cells. Our in vivo study showed that the weight of pancreatic tumors in Damina 909-treated group were the lighter than control group. Consequently, the intake of food and water in Damina 909-treated group did not change, while those in control group were steadily decreased over a period of treatment. Moreover, Damina 909 treatment elevated the protein expression of p53 and p21 in pancreatic tumor of xenografted nude mice. In summary, compare to other human cancer cells such as prostate and hepatocyte, Damina 909 is most effectively inhibited proliferation of pancreatic cancer cells by increasing the expression of tumor suppressor genes. This led us to speculate that a candidate substance for effective cancer therapy of pancreatic cancer might be contained in Damina 909.

Hypoxia Upregulates Mitotic Cyclins Which Contribute to the Multipotency of Human Mesenchymal Stem Cells by Expanding Proliferation Lifespan

  • Lee, Janet;Kim, Hyun-Soo;Kim, Su-Min;Kim, Dong-Ik;Lee, Chang-Woo
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.207-213
    • /
    • 2018
  • Hypoxic culture is widely recognized as a method to efficiently expand human mesenchymal stem cells (MSCs) without loss of stem cell properties. However, the molecular basis of how hypoxia priming benefits MSC expansion remains unclear. In this report, our systemic quantitative proteomic and RT-PCR analyses revealed the involvement of hypoxic conditioning activated genes in the signaling process of the mitotic cell cycle. Introduction of screened two mitotic cyclins, CCNA2 and CCNB1, significantly extended the proliferation lifespan of MSCs in normoxic condition. Our results provide important molecular evidence that multipotency of human MSCs by hypoxic conditioning is determined by the mitotic cell cycle duration. Thus, the activation of mitotic cyclins could be a potential strategy to the application of stem cell therapy.

Functional Classification of Gene Expression Profiles During Differentiation of Mouse Embryonic Cells on Monolayer Culture

  • Leem, Sun-Hee;Ahn, Eun-Kyung;Heo, Jeong-Hoon
    • Animal cells and systems
    • /
    • v.13 no.2
    • /
    • pp.235-245
    • /
    • 2009
  • Embryonic stem (ES) cells have a capability to generate all types of cells. However, the mechanism by which ES cells differentiate into specific cell is still unclear. Using microarray technology, the differentiation process in mouse embryonic stem cells was characterized by temporal gene expression changes of mouse ES cells during differentiation in a monolayer culture. A large number of genes were differentially regulated from 1 day to 14 days, and less number of genes were differentially expressed from 14 days to 28 days. The number of up-regulated genes was linearly increased throughout the 28 days of in vitro differentiation, while the number of down-regulated genes reached the plateau from 14 days to 28 days. Most differentially expressed genes were functionally classified into transcriptional regulation, development, extra cellular matrix (ECM),cytoskeleton organization, cytokines, receptors, RNA processing, DNA replication, chromatin assembly, proliferation and apoptosis related genes. While genes encoding ECM proteins were up-regulated, most of the genes related to proliferation, chromatin assembly, DNA replication, RNA processing, and cytoskeleton organization were down-regulated at 14 days. Genes known to be associated with embryo development or transcriptional regulation were differentially expressed mostly after 14 days of differentiation. These results indicate that the altered expression of ECM genes constitute an early event during the spontaneous differentiation, followed by the inhibition of proliferation and lineage specification. Our study might identify useful time-points for applying selective treatments for directed differentiation of mouse ES cells.

Cell Death and Proliferation after Treatment and Reinfection of Clonorchis sinensis in the Sprague-Dawley Rat Bile Duct

  • Min, Byoung-Hoon;Ahn, Ka-Young;Lee, Haeng-Sook;Kim, Soo-Jin;Joo, Kyoung-Hwan
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.80-88
    • /
    • 2015
  • The structural change and distribution of mitochondrial enzyme (ATPase, cytochrome-c-oxidase), cell proliferation (proliferating cell nuclear antigen, PCNA), cell death (caspase-3) and cell growth factor (fibroblast growth factor 8, FGF-8) in the Sprague-Dawley rat bile duct during Clonorchis sinensis infection was investigated. Experimental groups were divided into C. sinensis infection, superinfection and reinfection of C. sinensis after 'praziquantel' treatment group. As a result, C. sinensis infected rat bile ducts showed the features of chronic clonorchiasis, i.e., connective tissue thickening, ductal fibrosis and epithelial tissue dilatation. PCNA for cell proliferation increased in the infection group, and decreased after praziquantel treatment. Caspase-3 was distributed in reinfection group only. FGF-8 was distributed in the rat bile duct after praziquantel treatment but not distributed in infection and reinfection group. Overall, C. sinensis infection causes physical and chemical irritations and then brings on the abnormalities of intracellular energy metabolism and cellular growth factors, which hinders bile duct tissue from functioning properly, and resultingly, fibrosis occurs and epithelial cells dilated abnormally. More intense infection makes tissue fibrosis chronical and activates apoptosis factors.

EFFECT OF KOREAN BLACK SOYBEAN SEED ON THE CELLULAR PROLIFERATION AND THE PRODUCTION OF TYPE 111 COLLAGEN IN SKIN FIBROBLAST

  • Lee, Chungwoo;Hyeongbae Pyo;Youngho Cho;Park, Sungmin
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.31-37
    • /
    • 1998
  • Soybeans are one of the major crops for human food resource; protein, lipid, and carbohydrate. In these days, they are widely using for cosmetics to supply phospholipid; natural surfactant. In this study we used black soybean seed in korea and observed many kinds of biochemical constituents; isoflavone, melatonin, crisantemine and calcium in ethanol extract. Also, its extract (we named it Flatonin) has been demonstrated that korean black soybean seed is able to stimulate the proliferation of NIH 373 cells and increase the production of type III collagen in NIH 373 and Malme-3 (human skin fibroblast) cells. The addition of korean black soybean to quiescent NIH 373 cells resulted in an increase of proliferation which was assayed by MTF method. The maximum effect of korean black soybean was detected in 0.4% korean black soybean treated cells which was comparable to that of 5% serum(96% of 5% serum effect). The addition of korean black soybean to NIH 373 and Malme-3 cells also increased the production of type III collagen in both cells. These results indicate that korean black soybean may enhance the repair process after injury and prevent aging processes in connective tissues.

  • PDF

Protective effects of Betula platyphylla var. japonica extracts against the cellular damage induced by reactive oxygen species

  • Ji, Sang-Jin;Kim, Jeong-Hee
    • International Journal of Oral Biology
    • /
    • v.34 no.1
    • /
    • pp.15-20
    • /
    • 2009
  • In our present study, total methanol extracts prepared from B. platyphylla var. japonica showed a significant increase in cell proliferation upon the induction of oxidative stress by hydrogen peroxide or $\gamma$-ray irradiation. Total methanol extracts were fractionated into five separate preparations i.e. n-hexane, dichloromethane, ethylacetate, n-butanol and water fractions. Among these, the ethylacetate and butanol fractions of B. platyphylla var. japonica showed the highest protective effects against oxidative stress induced by hydrogen peroxide. These fractions also showed strong protective effects against $\gamma$-ray irradiation. When we evaluated the cytotoxicity of these fractions, the butanol fraction showed no effects in a colony formation assay. In addition, the butanol fraction showed a cell proliferation activation effect evidenced by significant increase in the colony formation of $\gamma$-ray irradiated cells. Both a radical scavenging activity and clonogenic activity assay suggested that the mechanism behind this protective effect against reactive oxygen species may be due to the radical scavenging and cell proliferation activity of B. platyphylla var. japonica extracts.

Prediabetic In vitro Model in Pancreatic Beta Cells Induced by Interleukin-$1{\beta}$ (췌장 베타세포에서 인터루킨-$1{\beta}$로 유도한 인슐린 의존형 당뇨병 실험 모델)

  • Lee, Ihn-Soon;Lee, In-Ja;Kim, Kyong-Tai
    • YAKHAK HOEJI
    • /
    • v.42 no.4
    • /
    • pp.408-413
    • /
    • 1998
  • To establish prediabetes in vitro/ model concerning the etiology of Insulin Dependent Diabetes Mellitus (IDDM) in cellular level we have designed experimental prediabefic model in pancreatic beta cells. RINm5F, HIT-T15 and isolated rat islets were chosen as pancreatic beta cells. Since interleukin-$1{\beta}$-induced beta cell cytotoxicity has been implicated in the autoimmune cytotoxicity of IDDM, we used inteleukin-$1{\beta}$ as diabetogenic agent. For establishment of prediabetic in vitro model, the degree of beta cell deterioration was determined by cell proliferation, insulin release and morphological appearance. Cell proliferation, insulin release and morphology were changed dose-dependently in condition that inteleuldn-$1{\beta}$ was exposured to pancreatic beta cells. The concentration and exposure time of interleukin-$1{\beta}$ to set up prediabetic model in beta cell lines and isolated rat islets were 100${\sim}$1000U/ml, 48hr. And 25${\sim}$100U/ml, 48hr, respectively.

  • PDF

RhoBTB3 Regulates Proliferation and Invasion of Breast Cancer Cells via Col1a1

  • Kim, Kyungho;Kim, Youn-Jae
    • Molecules and Cells
    • /
    • v.45 no.9
    • /
    • pp.631-639
    • /
    • 2022
  • Breast cancer is the leading cause of cancer-related death in women worldwide, despite medical and technological advancements. The RhoBTB family consists of three isoforms: RhoBTB1, RhoBTB2, and RhoBTB3. RhoBTB1 and RhoBTB2 have been proposed as tumor suppressors in breast cancer. However, the roles of RhoBTB3 proteins are unknown in breast cancer. Bioinformatics analysis, including Oncomine, cBioportal, was used to evaluate the potential functions and prognostic values of RhoBTB3 and Col1a1 in breast cancer. qRT-PCR analysis and immunoblotting assay were performed to investigate relevant expression. Functional experiments including proliferation assay, invasion assay, and flow cytometry assay were conducted to determine the role of RhoBTB3 and Col1a1 in breast cancer cells. RhoBTB3 mRNA levels were significantly up-regulated in breast cancer tissues as compared to in adjacent normal tissues. Moreover, RhoBTB3 expression was found to be associated with Col1a1 expression. Decreasing RhoBTB3 expression may lead to decreases in the proliferative and invasive properties of breast cancer cells. Further, Col1a1 knockdown in breast cancer cells limited the proliferative and invasive ability of cancer cells. Knockdown of RhoBTB3 may exert inhibit the proliferation, migration, and metastasis of breast cancer cells by repressing the expression of Col1a1, providing a novel therapeutic strategy for treating breast cancer.

Cell attachment and proliferation of osteoblast-like MG63 cells on silk fibroin membrane for guided bone regeneration

  • Yoo, Chae-Kyung;Jeon, Jae-Yun;Kim, You-Jin;Kim, Seong-Gon;Hwang, Kyung-Gyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.17.1-17.6
    • /
    • 2016
  • Background: The aim of this study is to verify the feasibility of using silk fibroin (SF) as a potential membrane for guided bone regeneration (GBR). Methods: Various cellular responses (i.e., cell attachment, viability, and proliferation) of osteoblast-like MG63 cells cultured on an SF membrane were quantified. After culturing on an SF membrane for 1, 5, and 7 days, the attachment and surface morphology of MG63 cells were examined by optical and scanning electron microscopy (SEM), cell viability was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell proliferation was quantified using 4',6-diamidino-2-phenylindole (DAPI) fluorescence staining. Results: Optical microscopy revealed that MG63 cells cultured on the SF membrane proliferated over the 7-day observation period. The viability of cells cultured on SF membranes (SF group) and on control surfaces (control group) increased over time (P < 0.05); however, at respective time points, cell viability was not significantly different between the two groups (P > 0.05). In contrast, cell proliferation was significantly higher in the SF membrane group than in the control group at 7 days (P < 0.05). Conclusions: These results suggest that silk fibroin is a biocompatible material that could be used as a suitable alternative barrier membrane for GBR.

Anti-tumor Effects of Vascular Endothelial Growth Factor Receptor-3 Inhibitor on Oral Cancer Cells (구강암 세포에서 혈관내피성장인자 수용체-3 억제제의 항종양 효과)

  • Kim, Chan-Woo;Kim, Seong-Gon;Park, Young-Wook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.4
    • /
    • pp.239-245
    • /
    • 2012
  • Purpose: Vascular endothelial growth factor (VEGF) plays a key role in tumor angiogenesis and lymphangiogenesis including induction of endothelial cell proliferation, migration and capillary tube formation. E7080 (S1164, Selleck chemical, Houston, TX, USA) is a muti-targeted kinase inhibitor, which targets VEGF receptor-2, 3 (VEGFR-2, 3) and inhibits survival and proliferation of tumor cell. The purpose of this study was to determine the anti-tumor effect of E7080 on oral squamous cell carcinoma. Methods: An oral squamous cell carcinoma cell line, SCC-9 was used in this study. E7080 was applied to SCC-9 cells by 3 different concentrations (1, 5, 10 ${\mu}g/mL$). Control means no application of E7080. The cellular growth was evaluated by real-time cell electronic sensing and MTT assay. The signal transduction was evaluated by Western blotting. Results: In experimental group, SCC-9 cell proliferation was decreased and the VEGFR-3 downstream pathways were inhibited compared with control. Furthermore, increasing the concentration of E7080, the ability of E7080 to disturbance of SCC-9 cell proliferation was increased. Conclusion: Proliferation of SCC-9 cells was inhibited by E7080, which was through by inhibition of VEGFR-3 downstream pathway. In vivo study with E7080 will be required to provide therapeutic benefits in oral squamous cell carcinoma.