Anti-proliferation Effect of Damina 909 on Pancreatic Cancer Cells in Tumor-Xenografted Nude Mice Model

  • Kim, Yu-Ri (Department of Biochemistry & Molecular Biology, Korea University) ;
  • Lee, Seung-Min (Department of Biochemistry & Molecular Biology, Korea University) ;
  • Seo, Sang-Hui (Department of Biochemistry & Molecular Biology, Korea University) ;
  • Lee, Seung-Ho (Department of Biochemistry & Molecular Biology, Korea University) ;
  • Kim, In-Kyoung (Department of Biochemistry & Molecular Biology, Korea University) ;
  • Jun, Hwang-Jeok (Department of Legal Medicine, College of Medicine, Korea University) ;
  • Nam, Jong-Hyun (GLAMI Co., LTD) ;
  • Kim, Meyoung-Kon (Department of Biochemistry & Molecular Biology, Korea University)
  • Published : 2009.03.31

Abstract

In this study, we investigated the anti-proliferative effect of Damina 909 in human cancer cell lines and tumor-xenografted nude mice to elucidate its potential in treating many cancers. Damina 909 treatment resulted in inhibition of cell proliferation of human pancreatic cancer cells. Our in vivo study showed that the weight of pancreatic tumors in Damina 909-treated group were the lighter than control group. Consequently, the intake of food and water in Damina 909-treated group did not change, while those in control group were steadily decreased over a period of treatment. Moreover, Damina 909 treatment elevated the protein expression of p53 and p21 in pancreatic tumor of xenografted nude mice. In summary, compare to other human cancer cells such as prostate and hepatocyte, Damina 909 is most effectively inhibited proliferation of pancreatic cancer cells by increasing the expression of tumor suppressor genes. This led us to speculate that a candidate substance for effective cancer therapy of pancreatic cancer might be contained in Damina 909.

Keywords

References

  1. Bader, Y. et al. Synergistic effects of deuterium oxide and gemcitabine in human pancreatic cancer cell lines. Cancer Lett 259:231-239 (2008) https://doi.org/10.1016/j.canlet.2007.10.010
  2. Michienzi, S. et al. 3,3′,5-Triiodo-L-thyronine inhibits ductal pancreatic adenocarcinoma proliferation improving the cytotoxic effect of chemotherapy. J Endocrinol 193:209-239 (2007) https://doi.org/10.1677/joe.1.07065
  3. Fahrig, R. et al. RP101 improves the efficacy of chemotherapy in pancreas carcinoma cell lines and pancreatic cancer patients. Anticancer Drugs 17:1045-1056 (2006) https://doi.org/10.1097/01.cad.0000231472.92406.d2
  4. Chen, J., Ouyang, Z. G., Zhang, S. H. & Zhen, Y. S. Down-regulation of the nuclear factor-kappaB by lidamycin in association with inducing apoptosis in human pancreatic cancer cells and inhibiting xenograft growth. Oncol Rep 17:1445-1451 (2007)
  5. Grau, A. M. et al. Induction of p21waf1 expression and growth inhibition by transforming growth factor beta involve the tumor suppressor gene DPC4 in human pancreatic adenocarcinoma cells. Cancer Res 57:3929-3934 (1997)
  6. Joshi, U. S. et al. Inhibition of pancreatic tumor cell growth in culture by p21WAF1 recombinant adenovirus. Pancreas 16:107-113 (1998) https://doi.org/10.1097/00006676-199803000-00001
  7. Michieli, P. et al. Induction of WAF1/CIP1 by a p53-independent pathway. Cancer Res 54: 3391-3395 (1994)
  8. Choi, S. E. et al. Cytotoxic activities of diarylheptanoids from Alnus japonica. Arch Pharm Res 31:1287-1289 (2008) https://doi.org/10.1007/s12272-001-2108-z
  9. Gartel, A. L. & Radhakrishnan, S. K. Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res 65:3980-3985 (2005) https://doi.org/10.1158/0008-5472.CAN-04-3995
  10. Ocker, M. & Schneider-Stock, R. Histone deacetylase inhibitors: signalling towards p21cip1/waf1. Int J Biochem Cell Biol 39:1367-1374 (2007) https://doi.org/10.1016/j.biocel.2007.03.001
  11. Waga, S., Hannon, G. J., Beach, D. & Stillman, B. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369:574-578 (1994) https://doi.org/10.1038/369574a0
  12. Sheikh, M. S., Rochefort, H. & Garcia, M. Overexpression of p21WAF1/CIP1 induces growth arrest, giant cell formation and apoptosis in human breast carcinoma cell lines. Oncogene 11:1899-1905 (1995)
  13. Eastham, J. A. et al. In vivo gene therapy with p53 or p21 adenovirus for prostate cancer. Cancer Res 55:5151-5155 (1995)
  14. Zhang, Y., Chen, A. Y., Li, M., Chen, C. & Yao, Q. Ginkgo biloba extract kaempferol inhibits cell proliferation and induces apoptosis in pancreatic cancer cells. J Surg Res 148:17-23 (2008) https://doi.org/10.1016/j.jss.2008.02.036
  15. Eisenberg, D. M. et al. Trends in alternative medicine use in the United States, 1990-1997: results of a followup national survey. Jama 280:1569-1575 (1998) https://doi.org/10.1001/jama.280.18.1569
  16. Sadava, D. et al. Effects of four Chinese herbal extracts on drug-sensitive and multidrug-resistant smallcell lung carcinoma cells. Cancer Chemother Pharmacol 49:261-266 (2002) https://doi.org/10.1007/s00280-002-0427-5
  17. Pusztai, A., Bardocz, S. & Ewen, S. W. Uses of plant lectins in bioscience and biomedicine. Front Biosci 13:1130-1140 (2008) https://doi.org/10.2741/2750
  18. Kamgang, R. et al. Antihyperglycaemic potential of the water-ethanol extract of Kalanchoe crenata (Crassulaceae). Nat Med (Tokyo) 62:34-40 (2008) https://doi.org/10.1007/s11418-007-0179-y
  19. Khil, L. Y. et al. Mechanisms involved in Korean mistletoe lectin-induced apoptosis of cancer cells. World J Gastroenterol 13:2811-2818 (2007) https://doi.org/10.3748/wjg.v13.i20.2811
  20. Friesen, C., Herr, I., Krammer, P. H. & Debatin, K. M. Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nat Med 2:574-577 (1996) https://doi.org/10.1038/nm0596-574
  21. Vogelstein, B. & Kinzler, K. W. p53 function and dysfunction. Cell 70:523-526 (1992) https://doi.org/10.1016/0092-8674(92)90421-8
  22. el-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817-825 (1993) https://doi.org/10.1016/0092-8674(93)90500-P
  23. Cheng, F., McLaughlin, P. J., Verderame, M. F. & Zagon, I. S. The OGF-OGFr axis utilizes the p21 pathway to restrict progression of human pancreatic cancer. Mol Cancer 7:5-16 (2008) https://doi.org/10.1186/1476-4598-7-5
  24. Kim, C. H. et al. Toxicity reduction and improvement of anticancer activities from Rhodiola sachalinensis A. Bor by ultra high pressure extracts process. Korean J Medicinal Sci 15:411-416 (2007)
  25. Richard, P. et al. Rhodiola rosea: A phytomedicinal overview. Herbal Gram 56:40-52 (2002)
  26. Lee, J. B. & Lee, B. R. Study on the anti-cancer, antimetastasis and effects of immune-response of aquaacupuncture with Cuscutea Semen infusion solution. J KAMS 18:94-104 (2001)