DOI QR코드

DOI QR Code

Cell attachment and proliferation of osteoblast-like MG63 cells on silk fibroin membrane for guided bone regeneration

  • Yoo, Chae-Kyung (Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University) ;
  • Jeon, Jae-Yun (Department of Dentistry/Division of Oral and Maxillofacial Surgery, College of Medicine, Hanyang University) ;
  • Kim, You-Jin (Korean Minjok Leadership Academy) ;
  • Kim, Seong-Gon (Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University) ;
  • Hwang, Kyung-Gyun (Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University)
  • Received : 2016.01.21
  • Accepted : 2016.03.10
  • Published : 2016.12.31

Abstract

Background: The aim of this study is to verify the feasibility of using silk fibroin (SF) as a potential membrane for guided bone regeneration (GBR). Methods: Various cellular responses (i.e., cell attachment, viability, and proliferation) of osteoblast-like MG63 cells cultured on an SF membrane were quantified. After culturing on an SF membrane for 1, 5, and 7 days, the attachment and surface morphology of MG63 cells were examined by optical and scanning electron microscopy (SEM), cell viability was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell proliferation was quantified using 4',6-diamidino-2-phenylindole (DAPI) fluorescence staining. Results: Optical microscopy revealed that MG63 cells cultured on the SF membrane proliferated over the 7-day observation period. The viability of cells cultured on SF membranes (SF group) and on control surfaces (control group) increased over time (P < 0.05); however, at respective time points, cell viability was not significantly different between the two groups (P > 0.05). In contrast, cell proliferation was significantly higher in the SF membrane group than in the control group at 7 days (P < 0.05). Conclusions: These results suggest that silk fibroin is a biocompatible material that could be used as a suitable alternative barrier membrane for GBR.

Keywords

References

  1. McAllister BS, Haghighat K (2007) Bone augmentation techniques. J Periodontol 78(3):377-396 https://doi.org/10.1902/jop.2007.060048
  2. Caplanis N, Sigurdsson TJ, Rohrer MD, Wikesjo U (1996) Effect of allogeneic, freeze-dried, demineralized bone matrix on guided bone regeneration in supra-alveolar peri-implant defects in dogs. Int J Oral Maxillofac Implants 12(5):634-642
  3. Massaro D, Massaro GD (2004) Estrogen regulates pulmonary alveolar formation, loss, and regeneration in mice. Am J Phys Lung Cell Mol Phys 287(6):L1154-L1159
  4. Hurley LA, Stinchfield FE, Bassett A, Lyon WH (1959) The role of soft tissues in osteogenesis. J Bone Joint Surg Am 41:1243-1266 https://doi.org/10.2106/00004623-195941070-00007
  5. Melcher A (1976) On the repair potential of periodontal tissues. J Periodontol 47(5):256-260 https://doi.org/10.1902/jop.1976.47.5.256
  6. Kansy M, Senner F, Gubernator K (1998) Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem 41(7):1007-1010 https://doi.org/10.1021/jm970530e
  7. Yuan J, Liu X, Akbulut O, Hu J, Suib SL, Kong J, Stellacci F (2008) Superwetting nanowire membranes for selective absorption. Nat Nanotechnol 3(6):332-336 https://doi.org/10.1038/nnano.2008.136
  8. Griffith LG, Naughton G (2002) Tissue engineering-current challenges and expanding opportunities. Science 295(5557):1009-1014 https://doi.org/10.1126/science.1069210
  9. Schenk RK, Buser D, Hardwick WR, Dahlin C (1994) Healing pattern of bone regeneration in membraneprotected defects: a histologic study in the canine mandible. Int J Oral Maxillofac Implants 12(6):844-852
  10. Zitzmann NU, Naef R, Scharer P (1996) Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration. Int J Oral Maxillofac Implants 12(6):844-852
  11. Fujihara K, Kotaki M, Ramakrishna S (2005) Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 26(19):4139-4147 https://doi.org/10.1016/j.biomaterials.2004.09.014
  12. Roccuzzo M, Bunino M, Needleman I, Sanz M (2002) Periodontal plastic surgery for treatment of localized gingival recessions: a systematic review. J Clin Periodontol 29(s3):178-194 https://doi.org/10.1034/j.1600-051X.29.s3.11.x
  13. Simion M, Scarano A, Gionso L, Piattelli A (1996) Guided bone regeneration using resorbable and nonresorbable membranes: a comparative histologic study in humans. Int J Oral Maxillofac Implants 11(6):735-742
  14. Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, Zhao P, Zha X, Cheng T, Chai C (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306(5703):1937-1940 https://doi.org/10.1126/science.1102210
  15. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529-2543 https://doi.org/10.1016/S0142-9612(00)00121-6
  16. Lutolf M, Hubbell J (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47-55 https://doi.org/10.1038/nbt1055
  17. Bunyaratavej P, Wang H-L (2001) Collagen membranes: a review. J Periodontol 72(2):215-229 https://doi.org/10.1902/jop.2001.72.2.215
  18. Kim K-H, Jeong L, Park H-N, Shin S-Y, Park W-H, Lee S-C, Kim T-I, Park Y-J, Seol Y-J, Lee Y-M (2005) Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol 120(3):327-339 https://doi.org/10.1016/j.jbiotec.2005.06.033
  19. Kieswetter K, Schwartz Z, Hummert T, Cochran D, Simpson J, Dean D, Boyan B (1996) Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res 32(1):55-63 https://doi.org/10.1002/(SICI)1097-4636(199609)32:1<55::AID-JBM7>3.0.CO;2-O
  20. Sui G, Yang X, Mei F, Hu X, Chen G, Deng X, Ryu S (2007) Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. J Biomed Mater Res A 82(2):445-454
  21. Liu H-C, Lee I, Wang J-H, Yang S-H, Young T-H (2004) Preparation of PLLA membranes with different morphologies for culture of MG-63 cells. Biomaterials 25(18):4047-4056 https://doi.org/10.1016/j.biomaterials.2003.10.098
  22. Unger RE, Sartoris A, Peters K, Motta A, Migliaresi C, Kunkel M, Bulnheim U, Rychly J, James Kirkpatrick C (2007) Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials 28(27):3965-3976 https://doi.org/10.1016/j.biomaterials.2007.05.032
  23. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32(8):991-1007 https://doi.org/10.1016/j.progpolymsci.2007.05.013
  24. Hammerle CH, Jung RE, Feloutzis A (2002) A systematic review of the survival of implants in bone sites augmented with barrier membranes (guided bone regeneration) in partially edentulous patients. J Clin Periodontol 29(s3):226-231 https://doi.org/10.1034/j.1600-051X.29.s3.14.x
  25. Minoura N, Tsukada M, Nagura M (1990) Physico-chemical properties of silk fibroin membrane as a biomaterial. Biomaterials 11(6):430-434 https://doi.org/10.1016/0142-9612(90)90100-5
  26. Berahim Z, Moharamzadeh K, Rawlinson A, Jowett AK (2011) Biologic interaction of three-dimensional periodontal fibroblast spheroids with collagen-based and synthetic membranes. J Periodontol 82(5):790-797 https://doi.org/10.1902/jop.2010.100533
  27. Carpio L, Loza J, Lynch S, Genco R (2000) Guided bone regeneration around endosseous implants with anorganic bovine bone mineral. A randomized controlled trial comparing bioabsorbable versus non-resorbable barriers. J Periodontol 71(11):1743-1749 https://doi.org/10.1902/jop.2000.71.11.1743
  28. Wang HL, Miyauchi M, Takata T (2002) Initial attachment of osteoblasts to various guided bone regeneration membranes: an in vitro study. J Periodontal Res 37(5):340-344 https://doi.org/10.1034/j.1600-0765.2002.01625.x
  29. Song J-Y, Kim S-G, Lee J-W, Chae W-S, Kweon H, Jo Y-Y, Lee K-G, Lee Y-C, Choi J-Y, Kim J-Y (2011) Accelerated healing with the use of a silk fibroin membrane for the guided bone regeneration technique. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112(6):e26-e33
  30. Cai K, Yao K, Lin S, Yang Z, Li X, Xie H, Qing T, Gao L (2002) Poly (D, L-lactic acid) surfaces modified by silk fibroin: effects on the culture of osteoblast in vitro. Biomaterials 23(4):1153-1160 https://doi.org/10.1016/S0142-9612(01)00230-7
  31. Chen W, Wang WW, Shi XZ, Chen N (2013) Evaluation of the biocompatibility and cell segregation performance of acellular dermal matrix as barrier membrane on guided tissue regeneration in vitro. Shanghai Kou Qiang Yi Xue 22(3):260-264
  32. Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65(4):457-470 https://doi.org/10.1016/j.addr.2012.09.043
  33. Lee S-W, Kim S-G (2014) Membranes for the guided bone regeneration. Korean Association of Maxillofacial Plastic and Reconstructive Surgeons 36(6):239-246 https://doi.org/10.14402/jkamprs.2014.36.6.239
  34. Jang E-S, Park J-W, Kweon H, Lee K-G, Kang S-W, Baek D-H, Choi J-Y, Kim S-G (2010) Restoration of peri-implant defects in immediate implant installations by Choukroun platelet-rich fibrin and silk fibroin powder combination graft. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109(6):831-836 https://doi.org/10.1016/j.tripleo.2009.10.038
  35. Sofia S, McCarthy MB, Gronowicz G, Kaplan DL (2001) Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 54(1):139-148 https://doi.org/10.1002/1097-4636(200101)54:1<139::AID-JBM17>3.0.CO;2-7

Cited by

  1. Biocompatible Silk Noil-Based Three-Dimensional Carded-Needled Nonwoven Scaffolds Guide the Engineering of Novel Skin Connective Tissue vol.22, pp.15, 2016, https://doi.org/10.1089/ten.tea.2016.0124
  2. In vivo bone regeneration ability of different layers of natural silk cocoon processed using an eco-friendly method vol.25, pp.8, 2016, https://doi.org/10.1007/s13233-017-5085-x
  3. Comparison of Bio-degradation for Ridge Preservation Using Silk Fibroin-based Grafts and a Collagen Plug vol.14, pp.3, 2016, https://doi.org/10.1007/s13770-017-0055-0
  4. Silk Fibroin-Alginate-Hydroxyapatite Composite Particles in Bone Tissue Engineering Applications In Vivo vol.18, pp.4, 2016, https://doi.org/10.3390/ijms18040858
  5. Molecular weight-associated cellular response to silk fibroin fragments demonstrated in MG63 cells vol.35, pp.1, 2016, https://doi.org/10.7852/ijie.2017.35.1.7
  6. Bone regeneration is associated with the concentration of tumour necrosis factor-α induced by sericin released from a silk mat vol.7, pp.None, 2016, https://doi.org/10.1038/s41598-017-15687-w
  7. Biological effects of silk fibroin 3D scaffolds on stem cells from human exfoliated deciduous teeth (SHEDs) vol.106, pp.2, 2018, https://doi.org/10.1007/s10266-017-0310-9
  8. Potential anti-cancer and anti-Candida activity of Zn-derived foams vol.6, pp.18, 2016, https://doi.org/10.1039/c7tb02726e
  9. Silk Protein-Based Membrane for Guided Bone Regeneration vol.8, pp.8, 2018, https://doi.org/10.3390/app8081214
  10. Angioplasty Using 4-Hexylresorcinol-Incorporated Silk Vascular Patch in Rat Carotid Defect Model vol.8, pp.12, 2016, https://doi.org/10.3390/app8122388
  11. Past, Present, and Future of Regeneration Therapy in Oral and Periodontal Tissue: A Review vol.9, pp.6, 2016, https://doi.org/10.3390/app9061046
  12. Clinical Study for Silk Mat Application into Extraction Socket: A Split-Mouth, Randomized Clinical Trial vol.9, pp.6, 2016, https://doi.org/10.3390/app9061208
  13. Role of 4-Hexylresorcinol in the Field of Tissue Engineering vol.10, pp.10, 2016, https://doi.org/10.3390/app10103385
  14. Finding the Perfect Membrane: Current Knowledge on Barrier Membranes in Regenerative Procedures: A Descriptive Review vol.12, pp.3, 2016, https://doi.org/10.3390/app12031042