• Title/Summary/Keyword: Cell-boundary use

Search Result 36, Processing Time 0.023 seconds

ELECTRO-MICROSCOPE BASED 3D PLANT CELL IMAGE PROCESSING METHOD

  • Lee, Choong-Ho;Umeda Mikio;Takesi Sugimoto
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.227-235
    • /
    • 2000
  • Agricultural products are easily deformable its shape because of some external forces. However, these force behavior is difficult to measure quantitatively. Until now, many researches on the mechanical property was performed with various methods such as material testing, chemical analysis and non-destructive methods. In order to investigate force behavior on the cellular unit of agricultural products, electro-microscope based 3D image processing method will contribute to analysis of plant cells behavior. Before image measurement of plant cells, plant sample was cut off cross-sectioned area in a size of almost 300-400 ${\mu}$ m units using the micron thickness device, and some of preprocessing procedure was performed with fixing and dyeing. However, the wall structure of plant cell is closely neighbor each other, it is necessary to separate its boundary pixel. Therefore, image merging and shrinking algorithm was adopted to avoid disconnection. After then, boundary pixel was traced through thinning algorithm. Each image from the electro-microscope has a information of x,y position and its height along the z axis cross sectioned image plane. 3D image was constructed using the continuous image combination. Major feature was acquired from a fault image and measured area, thickness of cell wall, shape and unit cell volume. The shape of plant cell was consist of multiple facet shape. Through this measured information, it is possible to construct for structure shape of unit plant cell. This micro unit image processing techniques will contribute to the filed of agricultural mechanical property and will use to construct unit cell model of each agricultural products and information of boundary will use for finite element analysis on unit cell image.

  • PDF

A Study on the Use of Momentum Interpolation Method for Flows with a Large Body Force (바디포오스가 큰 유동에서 운동량보간법의 사용에 관한 연구)

  • Choi Seok-Ki;Kim Seong-O;Choi Hoon-Ki
    • Journal of computational fluids engineering
    • /
    • v.7 no.2
    • /
    • pp.8-16
    • /
    • 2002
  • A numerical study on the use of the momentum interpolation method for flows with a large body force is presented. The inherent problems of the momentum interpolation method are discussed first. The origins of problems of the momentum interpolation methods are the validity of linear assumptions employed for the evaluation of the cell-face velocities, the enforcement of mass conservation for the cell-centered velocities and the specification of pressure and pressure correction at the boundary. Numerical experiments are performed for a typical flow involving a large body force. The numerical results are compared with those by the staggered grid method. The fact that the momentum interpolation method may result in physically unrealistic solutions is demonstrated. Numerical experiments changing the numerical grid have shown that a simple way of removing the physically unrealistic solution is a proper grid refinement where there is a large pressure gradient. An effective way of specifying the pressure and pressure correction at the boundary by a local mass conservation near the boundary is proposed, and it is shown that this method can effectively remove the inherent problem of the specification of pressure and pressure correction at the boundary when one uses the momentum interpolation method.

Inter-Sector Beamforming with MMSE Receiver in the Downlink of TDD Cellular Systems

  • Yeom, Jae-Heung;Lee, Yong-Hwan
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.118-126
    • /
    • 2008
  • The use of beamforming is effective for users in limited power environments. However, when it is applied to the downlink of a cellular system with universal frequency reuse, users near the sector boundary may experience significant interference from more than one sector. The use of a minimum mean square error (MMSE)-type receiver may not sufficiently cancel out the interference unless a sufficient number of receive antennas are used. In this paper, we consider the use of inter-sector beamforming that cooperates with a neighboring sector in the same cell to mitigate this interference problem in time-division duplex (TDD) environments. The proposed scheme can avoid interference from an adjacent sector in the same cell, while enhancing the transmit array gain by using the TDD reciprocity. The performance of the proposed scheme is analyzed in terms of the output signal-to-interference-plus-noise power ratio (SINR) and the output capacity when applied to an MMSE-type receiver. The beamforming mode can be analytically switched between the inter-sector and the single-sector mode based on the long-term channel information. Finally, the effectiveness of the proposed scheme is verified by computer simulation.

The Application of Metallic Thin Film for Tep Electrode of Poly-Si Solar Cell (다결정 실리콘 태양전지의 상부 전극용 금속 박막 적용)

  • 김상수;임동건;심경석;이준신;김흥우
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.202-205
    • /
    • 1997
  • We investigated grain boundary effect for terrestrial applications of solar cell\ulcorner with low cost, large area, and high efficiency. Grain boundaries are known as potential barriers and recombination centers for the photo-generated charge carriers, which make it difficult to achieve a high efficiency cell. To reduce these effects of grain boundaries, we investigated various influencing factors such as thermal treatments, various grid patterns, selective wet etchings for grain boundaries, buried contact metallizations along grain boundaries, and use of metallic thin films. From the various grid patterns we learned that the series resistance of solar cell reduced open circuit voltage and consequently decreased the cell efficiency. This paper describes the effect of various grid patterns and the employment of metallic thin films for a top electrode.

  • PDF

IBEM analyses on half-cell potential measurement for NDE of rebar corrosion

  • Kyung, Je-Woon;Tae, Sung-Ho;Lee, Han-Seung;Alver, Yalcin;Yoo, Jo-Hyeong
    • Computers and Concrete
    • /
    • v.4 no.4
    • /
    • pp.285-298
    • /
    • 2007
  • Corrosion of Reinforcement (rebar) is nondestructively estimated by the half-cell potential measurement. As is the case with other nondestructive testings (NDT), understanding of the underlying principles should be clarified in order to obtain meaningful results. Therefore, the measurement of potentials in concrete is analytically investigated. The effect of internal defects on the potentials measured is clarified numerically by the boundary element method (BEM). Thus, a simplified inversion by BEM is applied to convert the potentials on concrete surface to those on rebars, taking into account the concrete resistivity. Because the potentials measured on concrete surface are so sensitive to moisture content, concrete resistivity and surface condition, an inverse procedure to convert the potentials on concrete surface into those on rebars is developed on the basis of BEM. It is found that ASTM criterion is practically applicable to estimate corrosion from the potential values converted. In experiments, an applicability of the procedure is examined by accelerated corrosion tests of reinforced concrete (RC) slabs. For practical use, the procedure is developed where results of IBEM are visualized by VRML (Virtual Reality modeling Language) in three-dimensional space.

Classification of Tumor cells in Phase-contrast Microscopy Image using Fourier Descriptor (위상차 현미경 영상 내 푸리에 묘사자를 이용한 암세포 형태별 분류)

  • Kang, Mi-Sun;Lee, Jeong-Eom;Kim, Hye-Ryun;Kim, Myoung-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.169-176
    • /
    • 2012
  • Tumor cell morphology is closely related to its migratory behaviors. An active tumor cell has a highly irregular shape, whereas a spherical cell is inactive. Thus, quantitative analysis of cell features is crucial to determine tumor malignancy or to test the efficacy of anticancer treatment. We use 3D time-lapse phase-contrast microscopy to analyze single cell morphology because it enables to observe long-term activity of living cells without photobleaching and phototoxicity, which is common in other fluorescence-labeled microscopy. Despite this advantage, there are image-level drawbacks to phase-contrast microscopy, such as local light effect and contrast interference ring. Therefore, we first corrected for non-uniform illumination artifacts and then we use intensity distribution information to detect cell boundary. In phase contrast microscopy image, cell is normally appeared as dark region surrounded by bright halo ring. Due to halo artifact is minimal around the cell body and has non-symmetric diffusion pattern, we calculate cross sectional plane which intersects center of each cell and orthogonal to first principal axis. Then, we extract dark cell region by analyzing intensity profile curve considering local bright peak as halo area. Finally, we calculated the Fourier descriptor that morphological characteristics of cell to classify tumor cells into active and inactive groups. We validated classification accuracy by comparing our findings with manually obtained results.

Free-surface Boundary Condition in Time-domain Elastic Wave Modeling Using Displacement-based Finite-difference Method (시간영역 변위근사 유한차분법의 자유면 경계조건)

  • Min Dong-Joo;Yoo Hai Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.77-86
    • /
    • 2003
  • We designed a new time-domain, finite-difference, elastic wave modeling technique, based on a displacement formulation. which yields nearly correct solutions to Lamb's problem. Unlike the conventional, displacement-based, finite-difference method using a node-based grid set (where both displacements and material properties such as density and Lame constants are assigned to nodal points), in our new finite-difference method, we use a cell-based grid set (where displacements are still defined at nodal points but material properties within cells). In the case of using the cell-based grid set, stress-free conditions at the free surface are naturally described by the changes in the material properties without any additional free-surface boundary condition. Through numerical tests, we confirmed that the new second-order finite differences formulated in the cell-based grid let generate numerical solutions compatible with analytic solutions unlike the old second-order finite-differences formulated in the node-based grid set.

Segmentation of Bacterial Cells Based on a Hybrid Feature Generation and Deep Learning (하이브리드 피처 생성 및 딥 러닝 기반 박테리아 세포의 세분화)

  • Lim, Seon-Ja;Vununu, Caleb;Kwon, Ki-Ryong;Youn, Sung-Dae
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.965-976
    • /
    • 2020
  • We present in this work a segmentation method of E. coli bacterial images generated via phase contrast microscopy using a deep learning based hybrid feature generation. Unlike conventional machine learning methods that use the hand-crafted features, we adopt the denoising autoencoder in order to generate a precise and accurate representation of the pixels. We first construct a hybrid vector that combines original image, difference of Gaussians and image gradients. The created hybrid features are then given to a deep autoencoder that learns the pixels' internal dependencies and the cells' shape and boundary information. The latent representations learned by the autoencoder are used as the inputs of a softmax classification layer and the direct outputs from the classifier represent the coarse segmentation mask. Finally, the classifier's outputs are used as prior information for a graph partitioning based fine segmentation. We demonstrate that the proposed hybrid vector representation manages to preserve the global shape and boundary information of the cells, allowing to retrieve the majority of the cellular patterns without the need of any post-processing.

Toward the computational rheometry of filled polymeric fluids

  • Hwang, Wook-Ryol;Hulsen Martien A.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.171-181
    • /
    • 2006
  • We present a short review for authors' previous work on direct numerical simulations for inertialess hard particle suspensions formulated either with a Newtonian fluid or with viscoelastic polymeric fluids to understand the microstructural evolution and the bulk material behavior. We employ two well-defined bi-periodic domain concepts such that a single cell problem with a small number of particles may represent a large number of repeated structures: one is the sliding bi-periodic frame for simple shear flow and the other is the extensional bi-periodic frame for planar elongational flow. For implicit treatment of hydrodynamic interaction between particle and fluid, we use the finite-element/fictitious-domain method similar to the distributed Lagrangian multiplier (DLM) method together with the rigid ring description. The bi-periodic boundary conditions can be effectively incorportated as constraint equations and implemented by Lagrangian multipliers. The bulk stress can be evaluated by simple boundary integrals of stresslets on the particle boundary in such formulations. Some 2-D example results are presented to show effects of the solid fraction and the particle configuration on the shear and elongational viscosity along with the micro-structural evolution for both particles and fluid. Effects of the fluid elasticity has been also presented.

Novel Design of Brushless and Sensorless Vibration Motor Used for Cell-Phones (새로운 형태의 휴대폰용 브러쉬리스 센서리스 진동모터의 설계)

  • Lee, Hong-Joo;Kim, Kwang-Suk;Lee, Chang-Min;Hwang, Gun-Yong;Hwang, Sang-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.224-229
    • /
    • 2008
  • With the wide use of mobile phones, a paging signal by a sound transducer acts as an environmental noise on many occasions, thus necessitating an alternative paging signal by a vibration motor. Conventional vibration motors employ three-phase windings with mechanical brushes for commutation. In this paper, a new one-phase brushless and sensorless vibration motor is introduced utilizing digital signal processor chips in cell-phones. For electromagnetic field analysis, two-dimensional modeling can be implemented to determine the back electromotive force using axisymmetric boundary conditions. Geometric design parameters, such as coil pitch and magnet pitch. are considered for performance optimization. Through the experiments, it is shown that the proposed design has the equivalent performance with reduced number of parts, thus enhancing manufacturing productivity and reducing manufacturing cost.

  • PDF