Toward the computational rheometry of filled polymeric fluids

  • Hwang, Wook-Ryol (School of Mechanical and Aerospace Engineering, Research Center for Aircraft Parts Technology (ReCAPT), Gyeongsang National University) ;
  • Hulsen Martien A. (Department of Mechanical Engineering, Eindhoven University of Technology)
  • Published : 2006.12.30

Abstract

We present a short review for authors' previous work on direct numerical simulations for inertialess hard particle suspensions formulated either with a Newtonian fluid or with viscoelastic polymeric fluids to understand the microstructural evolution and the bulk material behavior. We employ two well-defined bi-periodic domain concepts such that a single cell problem with a small number of particles may represent a large number of repeated structures: one is the sliding bi-periodic frame for simple shear flow and the other is the extensional bi-periodic frame for planar elongational flow. For implicit treatment of hydrodynamic interaction between particle and fluid, we use the finite-element/fictitious-domain method similar to the distributed Lagrangian multiplier (DLM) method together with the rigid ring description. The bi-periodic boundary conditions can be effectively incorportated as constraint equations and implemented by Lagrangian multipliers. The bulk stress can be evaluated by simple boundary integrals of stresslets on the particle boundary in such formulations. Some 2-D example results are presented to show effects of the solid fraction and the particle configuration on the shear and elongational viscosity along with the micro-structural evolution for both particles and fluid. Effects of the fluid elasticity has been also presented.

Keywords

References

  1. Baaijens, F.P.T., 1998, Mixed finite element methods for viscoelastic flow analysis: a review, J. Non-Newtonian Fluid Mech. 79, 361-385 https://doi.org/10.1016/S0377-0257(98)00122-0
  2. Batchelor, G.K., 1970, The stress system in a suspension of forcefree particles J. Fluid Mech. 41, 545-570 https://doi.org/10.1017/S0022112070000745
  3. Brady, J.F., 1984, The Einstein viscosity correction in n dimensions, Int. J. Multiphase Flow 10, 113-114 https://doi.org/10.1016/0301-9322(83)90064-2
  4. Chung, H.T., S.H. Kang and W.R. Hwang, 2005, Numerical simulations of elliptic particle suspensions in sliding bi-periodic frames, Korea-Australia Rheol. J. 17, 171-180
  5. Fortin, M. and A. Fortin, 1989, A new approach for the FEM simulation of viscoelastic flows, J. Non-Newtonian Fluid Mech. 32, 295-310 https://doi.org/10.1016/0377-0257(89)85012-8
  6. Glowinski, R., T.-W. Pan, T.I. Hesla and D.D. Joseph, 1999, A distributed Lagrangian multiplier/fictitious domain method for particulate flows, Intern. J. Multiphase Flows 25, 755-749 https://doi.org/10.1016/S0301-9322(98)00048-2
  7. Guenette, R. and M. Fortin, 1995, A new mixed finite element method for computing viscoelastic flows, J. Non-Newtonian Fluid Mech. 60, 27-52 https://doi.org/10.1016/0377-0257(95)01372-3
  8. Heyes, D.M., 1985, Molecular dynamics simulations of extensional, sheet and unidirectional flow, Chemical Physics 98, 15-27 https://doi.org/10.1016/0301-0104(85)80090-2
  9. Hwang, W.R., M.A. Hulsen and H.E.H. Meijer, 2004a, Direct simulation of particle suspensions in sliding bi-periodic frames, J. Comput. Phys. 194, 742-772 https://doi.org/10.1016/j.jcp.2003.09.023
  10. Hwang, W.R., M.A. Hulsen and H.E.H. Meijer, 2004b, Direct simulation of particle suspensions in a viscoelastic fluid in sliding bi-periodic frames, J. Non-Newtonian Fluid Mech. 121, 15- 33 https://doi.org/10.1016/j.jnnfm.2004.03.008
  11. Hwang, W.R., M.A. Hulsen, H.E.H. Meijer and T.H. Kwon, 2004c, Direct numerical simulations of suspensions of spherical particles in a viscoelastic fluid in sliding tri-periodic domains, Proceedings of the XIVth International Congress on Rheology August 22-27, 2004; Editors: J.W. Lee and S.J. Lee, Seoul, Korea, CR10-1 to CR10-3
  12. Hwang, W.R., P.D. Anderson and M.A. Hulsen, 2005, Chaotic advection in a cavity flow with rigid particles, Phys. Fluids 17, 043602-1--043602-12 https://doi.org/10.1063/1.1884465
  13. Hwang, W.R. and M.A. Hulsen, 2006, Direct numerical simulations of hard particle suspensions in planar elongational flow, J. Non-Newtonian Fluid Mech. 136, 167-178 https://doi.org/10.1016/j.jnnfm.2006.04.004
  14. Kraynik, A.M. and D.A. Reinelt, 1992, Extensional motions of spatially periodic lattices, Intern. J. Multiphase Flow 18, 1045- 1059 https://doi.org/10.1016/0301-9322(92)90074-Q
  15. Lees, A.W. and S.F. Edwards, 1972, The computer study of transport processes under extreme conditions, J. Phys. C: Solid State Phys. 5, 1921-1929 https://doi.org/10.1088/0022-3719/5/15/006
  16. Mall-Gleissle, S.G., W. Gleissle, G.H. McKinley and H. Buggisch, 2002, The normal stress behaviour of suspensions with viscoelastic matrix fluids, Rheol. Acta 41, 61-76 https://doi.org/10.1007/s003970200006
  17. Ohl, N. and W. Gleissle, 1993, The characterization of the steadystate shear and normal stress functions of highly concentrated suspensions formulated with viscoelastic liquids, J. Rheol. 37, 381-406 https://doi.org/10.1122/1.550449
  18. Patankar, N.A., P. Singh, D.D. Joseph, R. Glowinski and T.-W. Pan, 2000, A new formulation of the distributed Lagrangian multipliers/fictitious domain method for particulate flows, Intern. J. Multiphase Flow 26, 1509-1524 https://doi.org/10.1016/S0301-9322(99)00100-7
  19. Patankar, N.A. and H.H. Hu, 2001, Rheology of a suspension of particles in viscoelastic fluids, J. Non-Newtonian Fluid Mech. 96, 423-443
  20. Schrauwen, B.A.G., L.E. Govaert, G.W.M. Peters and H.E.H. Meijer, 2002, The influence of flow-induced crystallization on the impact toughness of high-density polyethylene, Macromol. Symp. 185, 89-102
  21. Seshaijer, P. and M. Suri, 2000, hp submeshing via non-conforming finite element methods, Comput. Methods Appl. Mech. Engrg. 189, 1011-1030 https://doi.org/10.1016/S0045-7825(99)00414-4
  22. Sierou, A. and J.F. Brady, 2002, Rheology and microstructure in concetrated noncolloidal suspensions, J. Rheol. 46, 1031-1056 https://doi.org/10.1122/1.1501925
  23. Tanaka, H. and J.L. White, 1980, Experimental investigations of shear and elongational flow properties of polystylene melts reinforced with calcium carbonate, titanium dioxide, and carbon black, Polym. Eng. Sci. 20, 949-956 https://doi.org/10.1002/pen.760201406
  24. Vermant, J. and M.J. Solomon, 2005, Flow-induced structure in colloidal suspensions, J. Phys.: Condens. Matter 17, R187- R216 https://doi.org/10.1088/0953-8984/17/4/R02
  25. Yu, Z., N. Phan-Thien, Y. Fan and R.I. Tanner, 2002, Viscoelastic mobility problem of a system of particles, J. Non-Newtonian Fluid Mech. 104, 87-124 https://doi.org/10.1016/S0377-0257(02)00014-9