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Abstract

We present a short review for authors' previous work on direct numerical simulations for inertialess hard
particle suspensions formulated either with a Newtonian fluid or with viscoelastic polymeric fluids to under-
stand the microstructural evolution and the bulk material behavior. We employ two well-defined bi-periodic
domain concepts such that a single cell problem with a small number of particles may represent a large
number of repeated structures: one is the sliding bi-periodic frame for simple shear flow and the other is
the extensional bi-periodic frame for planar elongational flow. For implicit treatment of hydrodynamic inter-
action between particle and fluid, we use the finite-element/fictitious-domain method similar to the dis-
tributed Lagrangian multiplier (DLM) method together with the rigid ring description. The bi-periodic
boundary conditions can be effectively incorportated as constraint equations and implemented by
Lagrangian multipliers. The bulk stress can be evaluated by simple boundary integrals of stresslets on the
particle boundary in such formulations. Some 2-D example results are presented to show effects of the solid
fraction and the particle configuration on the shear and elongational viscosity along with the micro-struc-
tural evolution for both particles and fluid. Effects of the fluid elasticity has been also presented.

Keywords : direct numerical simulation, particle suspension, sliding bi-periodic frame, extensional bi-peri-

odic frame, suspension rheology

1. Introduction

It is quite common to add particles to fluids and poly-
meric fluids in particular. The reasons can be quite diverse,
e.g. for the manufacturing of ceramics where the polymer
is removed after processing, changing the product prop-
erties (such as adding flame retardants), modifying the
properties during processing, or even lowering the cost.
Understanding the rheological behavior is necessary for
processing those materials in a rational manner. In addi-
tion, the final properties of the product may also require
certain rheological features or a specific suspension micro-
structure. Therefore, studying the rheological properties of
particle-filled polymeric fluids is very important.

Understanding rheological properties of such a material
is obviously very difficult, since they are determined by the
flow-induced microstructure for both particles and the sus-
pending fluid, such as clustering/alignment of particles or
stretching and orientation of polymeric molecules. In order
to understand the formation of such microstructures, one
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needs to fully consider hydrodynamic interaction between
particles and fluids, inter-particle forces as well as complex
rheological property of the fluid. Moreover, the inter-rela-
tionship between the microstructure and the bulk material
behavior has not been clearly understood yet, especially for
polymeric suspensions.

For a suspension of non-Brownian particles in a New-
tonian fluid in simple shear flow, Brady and co-workers
(e.g. Sierou and Brady, 2002) have shown that inclusion of
hydrodynamic interactions using accelerated Stokesian
dynamics results in a powerful numerical technique that
can predict such a relationship between the microstructure
and the macroscopic properties. However, as clearly indi-
cated by Vermant and Solomon (2005), for suspensions of
particles in rheologically more complex fluids, the devel-
opments of simulation methods that can accommodate the
non-Newtonian nature of the suspending media is a nec-
essary next step.

For recent couple of years, we have concentrated our
research on the development of new computational meth-
ods that could satisfy the requirements above: i.e., direct
numerical simulation techniques that give sufficiently accu-
rate velocity (and its gradient) of the fluid medium along
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with full consideration of hydrodynamic and interparticular
interactions and moreover that admit the usage of state-of-
the-art viscoelastic constitutive models. In this paper, we
present a short review of authors' work performed for this
purpose (more specifically, Hwang er al., 2004a, 2004b,
2005; Hwang and Hulsen, 2006) on direct numerical sim-
ulations for inertialess particle suspensions, formulated
either with a Newtonian fluid or with viscoelastic fluids, in
both simple shear and planar elongational flows. In this
paper, we restrict our discussion on non-Brownian hard par-
ticle suspension in two-dimensional flows.

The paper is organized as follows: in the next section, we
start with mathematical treatment of freely suspended iner-
tialess particles that can be well suited with the fictitious
domain method. Then, we separately introduce bi-periodic
domain concepts for simple shear and planar elongational
flows, in order to construct the single representative cell
problem for each flow. Subsequently, we discuss a method
to incorporate the viscoelasticity of the fluid medium. In
section 3, we present computational methods based on the
combined weak formulation for each rheometric flow field
along with proper implementation techniques. We will also
present expressions for the bulk stress in such bi-periodic
computational domain. Finally, we review several example
results for both flows to illustrate the usefulness of the
present scheme in predicting the bulk rheological prop-
erties and the microstructural evolution in particle sus-
pensions in rheologically complex fluids.

2. Modeling aspects

2.1. Basic equations

As shown in Fig. 1, a representative rectangular domain,
denoted by Q, is the computational domain of this work
and the four boundaries of the frame are denoted by T,
(i=1, 2, 3, 4). We use a symbol I" for UZ, I.. Particles are
denoted by P(?) (i=1, ..., N) and N is the number of par-
ticles in a single domaln We use a symbol P(f) for UY, P(#),

(L, H)
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Fig. 1. A representative computational domain Q with a small
number of particles.
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a collective region occupied by particles at a certain time
t. For a particle P, X;=(X, 1), U=(U, V), @= wk and 6;
=@k are used for the coordinates of the particle center, the
translational velocity, the angular velocity and the angular
rotation, respectively; and k is the unit vector in the direc-
tion normal to the plane. Now we present the governing
equations in a strong form for the Newtonian fluid medium
for simplicity, neglecting inertia for both fluid and particles
that can be usually accepted for suspension of small par-
ticles. The governing equation for particles will be dis-
cussed in the subsequent section and the extension to the
viscoelastic flow will be presented in Sec. 2.5.

The set of equations for the fluid domain is given by

V-6=0, in Q\P(p), )
V-u=0, in QO\P(¥), )
o=—pl+2nD, in Q\P(?), 3)

1, ., N). “4)

Egs. (1-4) are equations for the momentum balance, the
continuity, the constitutive relation, and rigid-body con-
ditions on particle boundaries, respectively. u, o; p, I, D
and 7 are the velocity, the stress, the pressure, the identity
tensor, the rate of deformation tensor and the viscosity,
respectively. Unknown rigid-body motions in Eq. (4) will
be determined by hydrodynamic interactions.

u=U+ o x(x-X) on oP(1), (i=

2.2. Solid-liquid interaction

For the description of a particle in combination with fic-
titious domain methods, one can assign direct rigid-body
motions on the region occupied by the particle (Glowinski et
al., 1999; Yu et al., 2002), or impose zero rate-of-defor-
mation over the region (Patankar et al., 2000). Both methods
need domain discretization. However, we employ an alter-
native description for the particle domain instead for our
work. We consider a circular particle as a rigid ring, which
is filled with the same fluid as in the fluid domain so that the
rigid-body condition is imposed on the particle boundary
only. We call it the rigid-ring description. This description is
possible, whenever inertia is negligible. The rigid-ring
description needs discretization only along the particle
boundaries so that it gives significant reduction on memory
and it is easier to implement compared with methods using
domain discretization. In addition, the boundary discretiza-
tion allows the systematic treatment of boundary-crossing
particles, which is important in bi-periodic simulations.

From the rigid-ring description, the governing equations
for a region occupied by a particle P;at a certain time ¢ can
be written as:

V-0=0, in P{0), (5)
V-u=0, in P(2), 6)
o=-pl+2nD, in P(), @)
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u=U+a,x(x—X), on OP(?). ®) finite element method. Fig. 2 shows sliding bi-periodic
frames and a possible three-particle configuration in a sin-
gle frame. At an arbitrary instance, say =0, an unbounded
domain of interest can be regularly divided into an infinite
number of frames of the width L and the height H. As time
goes on, each frame translates along the shear direction at
its own average velocity (of the flow inside the frame).
Rows of the frames slide relatively to one another by an
amount determined by the given shear rate y, elapsed time
¢t and height of the frame H.

The amount of slide A between upper and lower frames
F,= o-n ds=0, (9) is given by

6P (1)

1= [, G-X)x(om ds=o, (o) AT o

70

Egs. (5-8) are the equations for the momentum balance, the
continuity, thé constitutive relation, and tHe boundary con-
dition, respectively, which are exactly the same as fluid
domain equations in Egs. (1-4).

To determine the unknown rigid body motions (U;, @;) of
the particles, one needs balance equations for drag forces
and torques on particle boundaries. In the absence of iner-
tia and external forces or torques, particles are force-free
and torque-free:

For some properties of the sliding bi-periodic frame, refer to
Hwang et al. (2004a). A sliding frame which contains a small
number of particles can represent an infinite number of such
systems because of the bi-periodicity as described in Fig. 2.

Now we consider mathematical descriptions of the bi-
periodicity in the sliding frame (see Fig. 2). The kinematic
relation and the force balance for the horizontal periodicity
between I'> and I', can be written as follows:

where T;= Tk and » is a normal vector on 0P; pointing out
of the particle.

2.3. Simple shear flow

We consider flowing suspensions consisting of a large
number of non-Brownian circular disk particles in a New-
tonian fluid. Complex particle motions and hydrodynamic
interactions induce complicated micro-structural develop- u(0, y=u(L, y), ye[0, H] (12)
ments. In order to deal with such problems, a well-defined bi- _
periodic domain needs to be introduced, through which one 10, y)=—AL, y), y€ 0, H, (13)
can observe what happens inside. The bi-periodic domain ~ where ¢ are tractions on the boundaries.
concept may transform a suspension in an unbounded The vertical sliding periodicity between I'; and I'; is more
domain with an infinite number of particles into a particulate complicated, since it is time-dependent. One needs to take
flow problem in a unit cell which can be solved at reasonable into account (i) coincidence in positions, (ii) the velocity
computational costs. Ideally we want to translate the unit  continuity, and (iii) the force balance between I'; and I's.
domain at the average velocity of the flow in a cell. In simple The two conditions for the vertical sliding periodicity can
shear flows the Lees-Edwards boundary condition (LEbc), be summarized in turns as (for details, Hwang ef al.
proposed by Lees and Edwards (1972) for Molecular  2004a): :
Dynamics, satisfies the above requirements exactly, dimin-

7 > ; ; : H=u({x— yHt}", 0; O+ .
ishing finite size effect of the computational domain. ulx, Hy n=u(lx=yH}, 0; +f, x<[0, ) (14)
We employ so-called the sliding bi-periodic frame, an tx, H, H=—t({x— yHt}", 0; 1), xe[0, L). (15)
extension of LEbc to the continuous field problem, in order
to incorporate with the velocity-pressure formulation of the f=(yH, 0) originates from the difference in the x direc-
shear rate y
_ - ~Je - (x, H)
. N PR N B R 7 7 (L! H)
YHt S \\ ) \\ | \\ ' /’ /’ s
Y, 7 - R N
LN N R ST / L
L0 S P VR A VR R I e Floimes /—/—-—»
VAR AN AN T / J
- -4 V" u_‘ _“‘"';I ________ 2Ry A I_'_'_"I'/‘ """ '/"'
S O S RO T N y Yy
TN AN AN T (0,0)  ((x-7HY",0) -
O—C—=0

Fig. 2. A three-particle configuration of a sliding bi-periodic frame can represent a large number of repeated structures in simple shear
flow (right). Kinematic relation for the vertical periodicity is present also (left) (Hwang e/ al., 2004a, 2004b).
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tional velocity component; {-}" denotes a modular function
of L: e.g., {1.7L}"=0.7L and {~1.7L} ' =0.3L. Egs. (12-15)
complete the governing equation set for the fluid domain
(with Egs. 1-4).

2.4. Planar elongational flow

Now we consider suspensions in planar elongational
flow. In non-equilibrium molecular dynamics simulation of
elongational flow, Heyes (1985) introduced the concept of
the deforming simulation cell, which is aligned in flow
direction and stretches in that direction. The cross-flow
dimensions of the cell decrease such that the volume of the
cell remains constant. For planar elongational flows, it is
possible to use so-called Kraynik-Reivelt boundary con-
ditions (Kraynik and Reinelt, 1992) and simulations can
performed indefinitely. However this approach is difficult
to use and cannot be extended to uni-axial elongational or
bi-axial stretching flows.

In order to introduce a bi-periodic domain for our work,
we adopt the simple deforming cell approach of Heyes and
propose the extensional bi-periodic frame as a computa-
tional domain for the representative unit cell problem in
planar elongational flow of particle filled fluids.

Fig. 3 shows the extensional bi-periodic frames with the
elongation rate z. (The coordinate system is indicated
therein as well.) The extensional frame is a material frame
in that it translates and deforms along the flow kinematics.
The hatched region in Fig. 3 indicates a single frame for
the illustration. At an arbitrary instance, say ¢=0, the
unbounded domain is regularly divided into an infinite
number of cells (or frames) of the width L, and the height
H,. As time goes on, frames elongate in the horizontal
direction and contract in the vertical direction, while trans-
lating along the flow. Given the elongation rate & as in Fig.
2, the time-dependent changes of the width L and the
height H of the frame can be expressed as

Although each frame translates at different velocity, the
frame dimensions L(f) and H(f) along with the relative
velocity of the fluid particle with respect to the center of
each frame are the same and periodic for all the extensional
frames and for all time 7. Also, such arguments are still
valid for non-homogeneous fluid systems subject to planar
elongational flow, e.g. particle suspensions or droplet
emulsions, if'the initial configuration of the particles or the
droplets is periodic from the beginning. For details, refer to
Hwang and Hulsen (2006).

Now we discuss the mathematical description of the bi-
periodicity in the extensional frame. (In planar elongational
flow, we use a computational domain centered at (0,0) for
convenience. That is an extensional bi-periodic frame at a
certain time ¢ is given by [-0.5L(¢), 0.5L(1)]x [-0.5H(?),
0.5H(5)]). The continuity of the velocity field and the force
balance need to be satisfied across the domain boundary I
The conditions in the horizontal direction (between I'; and
I'y) at a certain time ¢ can be written as follows:

u(0.5L(1), y)=u(=0.5L(), y)+ £ y € [-0.5H(2), 0.5H(1)]
7)

#0.5L(5), y)=—-0.5L(¢), y), y €[-0.5H(), 0.5H(?)],
(18)
where the vector ¢ is the traction force on the boundary and
Ji=(EL(?), 0). With the elongation rate &, the velocity in
the x direction on the right boundary (I",) is faster than that
on the left boundary (I';) by the amount of the velocity dif-

ference &L(r). Similarly, the conditions for the periodicity
in the vertical direction between I'; and I'; are

u(x, 0.5SH(D)=u(x, —0.5H()+f,, x € [-0.5L(?), 0.5L(£)]
(19)

1x, 0.5H(#)=—#(x, —0.5H(®)), x € [-0.5L(#), 0.5L()].
(20)

The velocity difference in the vertical direction is specified

L()=L, exp(&), H(t)=H, exp(-&t ). (16) by £,=(0, -&H(r) ) in Eq. 19). Again Egs. (17-19) complete
t<0 t=0 t>0
y
[} Y L 0 y
A
A HNwe )\
/ Z \ =z Prd ~ H(t)
= X X = X - X
\\ /e' 5 \\ >

bi-periodic frame
in planar elongational flow

Fig. 3. Extensional bi-periodic frames in planar elongational flow. The movement and the deformation of a single frame is indicated

for the illustration (hatched) (Hwang and Hulsen, 2006).
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the governing equation set for the fluid domain (with Eqs.
1-4) for particle suspensions’in planar elongational flow.

2.5. Viscoelasticity

Although modeling up until now has been carried out for
particle suspensions in.a Newtonian fluid, one can easily
extend it to cover the viscoelastic fluid medium case. Since
details on this issue have been discussed in Hwang ef al.
(2004b), we briefly summarize additional consideration
necessary to accommodate the viscoelasticity in the fluid
here.

Consider a simple non-linear viscoelastic constitutive
model (Oldroyd-B) in fluid domain:

o=-pl+2nD+ 1, in Q\P(t), 21

where 1, 7, 7, 77, and A are the identity tensor, the poly-
meric contribution to the extra-stress tensor, the viscosity
of a Newtonian solvent, the polymer viscosity and the
relaxation time, respectively. The symbol V denotes the
upper-convected time derivative, defined as

‘Z,E%z;-’-’+u~Vrp—(Vu)T~ 7,~1,-Vu.
We remark that, even with the elasticity of fluid, the rigid-
ring description (Sec. 2.2) is still valid. Indeed, the descrip-
tion holds whenever inertia for both fluid and particle are
negligible and this means that a particle is considered as a
rigid ring, which is filled with the same fluid as in the fluid
domain. Therefore, Eq. (21) holds for the domain occupied
by the particle also, along with the remaining Egs. (5-8).
The initial condition for the polymer stress is the stress-free
state, as it should be inside the rigid-ring and we do not
need an inflow condition for the polymer stress z,, since
there is no net convection of material particles across the
particle boundary.

3. Computational methods

3.1. Combined weak formulation

We follow the approach of Glowinski et al. (1999) in the
derivation of the weak form in the sense that fluid-particle
interactions are treated implicitly via the combined weak
formulation where hydrodynamic force and torque on a
particle boundary exactly cancel. However, we will make
a few modifications for the rigid-ring description of par-
ticles (Egs. 5-8) and for the bi-periodic frame constraints:
Egs. (12) and (14) for the sliding bi-periodic frame, and
Egs. (17) and (19) for the extensional bi-periodic frame
(Hwang et al., 2004a, 2005a; Hwang and Hulsen 2006).

We introduce three different kinds of Lagrangian mul-
tipliers A", ', and A , which are associated with the kine-
matic constraint equation for the periodicity in the
horizontal direction (Eq. 12 for simple shear flow or Eq. 17
for planar elongational flow), the constraint equation for
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periodicity in the vertical direction (Eq. 14 for simple shear
flow or Eq. 19 for planar elongational flow) and the rigid-
ring constraint equation along the i-th particle boundary
(Egs. 4 and 8):

A'=(4, &) € LT,
=B, &) e ATy,
H'=(H] ) € L@P(0)Y.

In Hwang et al. (2004a), we showed that the multipliers A"
and A" are the traction force on the domain boundary I" and
that the multiplier #'is related to the traction force acting
on the particle boundary OP(r). This can be considered
quite useful in evaluating the bulk stress, without intro-
ducing the domain integral.

Below is presented the combined weak formulation for
Newtonian particle suspensions in sliding bi-periodic
frame of simple shear flow, as an example. Application to
extensional bi-periodic frame for planar elongational flow
and that for the viscoelastic fluid medium will be discussed
in the next subsection:

Find u e H'(QY, U,eR?, @R, ¥ e L(OP())), p € L(Q),
Ae LX), and A" e LX) (i=1, .., N) such that

- J’pV -vdA+ J'2 nD(u) : D(v)d4
0 Q

S, (Vi X (=X, 22)

(A, vx, Hy —v({x— yHiY', 0; D),
+((A', W0, »)=w(L, Y)r,=0 .
IqV -ud4 =0, 23)

<ﬂp'i’ u_(l]i+ a)ix(x_)(i)))@Pi:Oa (i:l, ooy N)’ (24)
<luh5 ”(07 y)_u(La y)>l"4:O’ (25)
W', ux, H; n)—u({x=yHt}", 0; D)=, fir,  (26)

for all ve H'(QY, VieR’, z€R, gelQ), u* cL¥OP(),
" e IX(T,), and g” € L}(T;) (i=1, .., N). The inner product
", r;is the standard inner product in LXT):

</l, V>rj: j_ 24 ds.

3.1.1. Remarks

1. Force-free, torque-free rigid-body motions of particles
are satisfied in a weak sense through rigid-ring constraints
(Egs. 22 and 24); and the Lees-Edwards boundary con-
dition is combined with the weak form through the sliding
bi-periodic frame constraints (Egs. 22, 25 and 26).

2. Once a particle configuration is given, one can solve
Egs. (22-26), to get the solution (u, p, U, ®) and all the
Lagrangian multipliers, and then determine the next par-
ticle configuration.
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Wook Ryol Hwang and Martien A. Hulsen

3. It is necessary to specify a reference velocity at a sin-
gle point in the fluid domain, since the sliding boundary
constraints give only relative difference in velocities of the
boundaries. To obtain a simple shear flow in the x direc-
tion, the y component of the reference velocity needs to be
specified zero.

4. The pressure level should be specified through one of
the normal components of the Lagrangian multipliers on I
to the boundary (i.e., A% or 4}), since the Lagrangian mul-
tiplier is a traction.

3.1.2. Planar elongational flow

The weak form (Egs. 22-26) can be modified for planar
elongational flow, simply by replacing the weak equations
(Eqgs. 25 and 26) for the sliding bi-periodic frame by those
for the extensional bi-periodic frame as follows:

(W', u(=0.5L, y)~u(0.5L, y\r,=H, fidrs Fi=(£L(2), 0)
@n

</f’ u(xa O-SH)'—u(xa _0'5[1)>l'3=<.uv’ .ﬁ)l“}’ ﬁ:(oa "8H(t)))
8

The corresponding variational term should be present in
the weak equation for the momentum balance (Eq. 22) as
below:

N

- J' pV -vdQ+ L277D(u) : DdQ+ 5 (A,

Q

v—[Vi— b x (x=X)Dor H( A, W=0.5L, )-w0.5L, y))r,
+(, v(x, 0.5H)—w(x, ~0.5H)),=0 (29)

Again the extensional bi-periodic frame constraint is sat-
isfied weakly with the multipliers A" and A'(Egs. 29, 27 and
28). For details on the weak form in this case, refer to
Hwang and Hulsen (2006).

3.1.3. Viscoelastic fluid medium

Below we briefly describe the extension of the previous
weak form to incorporate the viscoelastic fluid. We employ
the DEVSS method, a mixed finite-element formulation
developed by Guénette and Fortin (1995), which appears to
provide one of the most robust formulations currently
available. The DG formulation of Fortin and Fortin (1989)
is used for the discretization of the constitutive equation.
The combination of the DEVSS formulation with DG has
been verified to produce a remarkably stable solution, in
particular, for flows with a geometrical singularity (Baaijens
1998).

For the DEVSS formulation, we introduce an extra vari-
able e, the viscous polymer stress.

e=2n,D. (30)
Then one can rewrite the momentum equations for the
fluid domain (Eq. 1) and for the particle domain (Eq. 5)
with the viscous polymer stress, which gives extra stability
in the discretized equations compared with the formulation
without e.

176

The weak form for the viscous polymer e in DEVSS is
—J‘es . D[u]dd+—— J;? :edd=0, (31
Q 277[7

and the evolution of the viscoelastic stress 7, can be eval-
uated by DG:

‘E:(l%+%—2%DUdNA+lZLﬁ:(g—ﬁﬁ@rnﬂs=0

(32)

In Egs. (31) and (32), e, and S are tensorial test functions.
In Eq. (32), n is the unit outward normal vector on the
boundary of element e, 'Y is the part of the boundary of
element e where u-n<0, and 73" is the polymer stress in
the neighboring upwind element.

The DG method, which uses discontinuous interpolation
of the polymer stress, is particularly suited in this simu-
lation not only because of minimal coupling between ele-
ments, avoiding a large number of coupled equations, but
also from the inherent discontinuous nature of the fictitious
domain method, since the viscoelastic stress is discontin-

uous across the particle boundary.

3.2. Implementation

For the discretization of the momentum equation in the
weak form, we use regular quadrilateral elements with con-
tinuous bi-quadratic interpolation (Q,) for the velocity u,
discontinuous linear interpolation (P;) for the pressure p
for the entire computational domain, including the interior
of the particle. An example mesh for the two particle prob-
lem is presented in Fig. 4.

To discretize the weak form of the rigid-ring constraint,
we use the point collocation method. For example, the inte-
gral in Eq. (24) has been approximated as follows:

(), o)~ (U 0% (=X
= 3 ' ()~ (Ut 0 x (5-X))}, ()

where M, x,, x'; and g’ are the number of the collocation
points on P, the original (before relocatior) of the 4-th col-

Fig. 4. An example finite-element mesh. Particles are described
by the points collocated on the particle boundary.
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location point, the relocated coordinate of the k-th collo-
cation point and the collocated Lagrangian multiplier at x’,,
respectively. Approximately one collocation point in an
element appears to give the most accurate solution (Hwang
et al., 2004a).

To discretize the boundary integrals for the horizontal
and vertical periodicity for both simple shear and planar
elongational flows, we use the mortar element method. If
the corresponding elements to be attached are conforming,
the nodal collocation method will be the best method,
since it does not introduce any approximation. Otherwise,
the mortar element method in the integral expression is
necessary to guarantee the continuous attachment for both
velocity field and traction force. In our experience, the
continuous linear interpolation of the Lagrangian multi-
plers renders the best result for non-conforming elements
(Seshaijer and Suri 2000; Hwang et al., 2004a). Since the
facing elements between I', and T’y or between I', and Ty
are always conforming due to the regular discretization of
the computational domain, one could use the nodal col-
location method to implement the periodicity constraint
for both directions. The latter method found to generate
identical results with the method used in this work.

3.3. Bulk stress expression

The bulk stress, the average stress over the domain, can
be expressed, for a volume ¥ as the sum of the fluid con-
tribution and the particle contribution (Batchelor 1970):

_1 -1 1
(o) = T/jde ijj’dV+ ijde’

where (-) denotes the averaged quantity in ¥, ¥;and V, are
the volume occupied by the fluid and the particle, respec-
tively. In the weak formulation of the sliding bi-periodic
frame, we have the boundary integral expression for the
bulk stress using the identity between the traction force and
the Lagrangian multipliers A, 2’and #, by comparing the
standard weak form under prescribed tractions on I" with
the weak form of the momentum balance (Eq. 22). (For
details, refer to Hwang er al., 2004a)

The Lagrangian multipliers A" and A’ for the sliding bi-
periodic frame constraints in the weak form (Egs. 25 and
26) can be identified by the traction force # on the domain
boundary I, by comparing the standard weak form under
prescribed tractions on ' with the weak form of the
momentum balance (Eq. 22). Using the identity, the bulk
stress over the computational domain can be expressed by
boundary integrals of the Lagrangian multipliers along I':

(o12) =ﬁf [ =ity =) s X jo”@(y)dy

= —% Kﬁ;(x)dx. (34c)

Since such a relationship is still valid in the extensional
bi-periodic frame, one can find similar expression for the
bulk stress in extensional bi-periodic frame in Hwang and
Hulsen (2006). Also, the same relationship is valid in the
viscoelastic flow, since the traction force includes the con-
tribution from the polymer stress, t=n-(—pI+2nD+ ).
One can use Eq. (34) as is for the viscoelastic suspensions.

4. Some results

4.1. Simple shear flow

The first review problem is stated as follows: a single
particle of radius 7 is suspended freely at a center of a slid-
ing bi-periodic frame of size 1x1 under three different
shear rate ¥=0.1, 1 and 2 in an Oldroyd-B fluid of the
Newtonian solvent viscosity 7,=1 and the polymer vis-
cosity 77,=1. The relaxation time A is 0.5. The reference
velocity has been specified zero at the center of the left
boundary so that the particle does not translate relatively to
the frame, but rotates at the fluctuating angular velocity.
This problem represents a regular configuration of an infi-
nite number of such a particle system and the initial con-
figuration is reproduced after the period T=L/(y H).

By taking the time average from steady oscillation parts
of the bulk stress result, one can obtain steady time-aver-
aged bulk suspension properties, as shown in Fig, 5 as a
function of solid area fraction and the Weissenberg num-
ber. The bulk viscosity and the first normal stress coef-
ficient show the shear-thickening behavior. For a small
Weissenberg number (We=0.05), the shear viscosity con-
verges to that of Newtonian system and for the small value
of solid area fraction ¢ the shear viscosity converges to
Einstein's analytic results for a dilute Newtonian system
with the coefficient 2 (Brady, 1984). Also the steady aver-
aged first normal stress coefficient converges to 1 of pure
Oldroyd-B fluid for small value of ¢ and it converges to
the second-order fluid (SOF) limit for a small Weissenberg
number (We=0.05) and for a small value of ¢ (Patankar
and Hu 2001).

Regarding bulk suspension behavior, one common
experimental observation is that the first normal stress dif-
ference in a filled viscoelastic fluid is a power-law function
of the imposed shear stress such that N, 7" with an expo-
nent » that appears to depend on the specific matrix fluid
used in preparing the suspensions (Tanaka and White,

(o) = Al [ (=71} 0 Ax(o)de+ %{ ["20)dy,  (34a)  1980; Ohl and Gleissle, 1993; Mall-Gleissle ef al., 2002).
r0 0 With this argument, the » value in the Oldroyd-B fluid

_ 1, becomes 2, since it is independent of the volume fraction.

(o) = _ZIO Ay, (340) order to check the appearance of such a relationship in
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Fig. 5. The steady time-averaged bulk suspension properties as a function of the solid area fraction ¢ for different Weissenberg numbers
Pax = 4). (8) The relative shear viscosity and (b) the relative first normal stress difference coefficient. (Reproduced from Hwang

et al., 2004b).
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Fig. 6. The scaling between the steady time-averaged first normal
stress difference and the shear stress in suspensions for-
mulated with an Oldroyd-B fluid for various solid area
fraction ¢(7,=7,=1). (Reproduced from Hwang er al,
2004b).

our simulation results, we plotted the steady time-averaged
first normal stress difference as a function of the steady
bulk shear stress using the log-log scale in Fig. 6. Inter-
estingly, our single-particle simulations in a 2-D sliding
frame reveal a set of parallel straight lines which gradually
shift to the shear stress axis with increasing solid area frac-
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tions, for the wide range of ¢, from the low particle con-
centration (3.14%) to the extremely high concentration
(50.3%). For further analysis results on this example, refer
to Hwang et al. (2004b).

As for the second example of simple shear flow, six ran-
domly distributed particles in the sliding bi-periodic frame.
The main objective here is to see how complicated particle/
fluid and particle/particle interactions affect the micro-
structural behavior in concentrated suspensions with a vis-
coelastic fluid. The size of the sliding frame is 1 x 1 and the
solid area fraction ¢=0.296. Fig. 7 shows the instantaneous
distributions of the trace of tensor A:

A

A=1 77pr |
Firstly, one can observe strong elongational flows gener-
ated between separating particles. Secondly, another high
stretched region occurs when two particles approach (or
kiss) each other closely. Thirdly, there is also weak elon-
gational flow region between particles aligned parallel to
the flow direction. The value of tr(4) in such a region is
sometimes lower than the value 2.5, which is the value of
the pure Oldroyd-B fluid under the same condition. There-
fore, the resultant microstructure becomes highly non-uni-
form and anisotropic. Especially, there seems to be a
typical orientation for the highly stretched regions which
originate from separating particles. The presence of the ori-
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Fig. 7. The distribution of the trace of the conformation tensor in
the six particle problem with different radii with We=1 at
yH(=1/2)=6.384. (Reproduced from Hwang et al., 2004b).

ented highly elongational flows is particularly interesting,
since it induces polymer molecules to align in such a direc-
tion, which could affect the micro-rheological behavior of
the suspension. (Refer to Schrauwen et al. (2002) for
experimental observations about flow effects on the impact
toughness in the injection-molded products of a hard par-
ticle-filled semi-crystalline polymer.)

4.2. Planar elongational flow

. We review one example problem here for suspensions in
planar elongational flow: randomly distributed 100 parti-
cles of the same radius r are suspended initially in an
extensional bi-periodic frame of L,=H,=1 under the given
elongation rate &=1 and the fluid viscosity 7=1.

Fig. 8 shows an example result with a particle radius »=
0.025 (¢=0.196) for the strain £¢=0, 0.5 and 1 with the
distribution of the total shear rate (/). In this case, the
vertical distances between particles decrease exponentially,
while the horizontal distance increases, due to the planar
elongational flow. However, there is no vertical alignment
of particles, since randomly distributed particles and their
interactions always keep the particles from being aligned:
particles continuously fill in the space between the expo-
nentially separating other particles. Therefore, one can
expect limited increase of the bulk elongational viscosity
with respect to the applied strain in many particle prob-
lems. Plotted in Fig. 9 is the relative bulk elongational vis-
cosity computed in the 100 particle problems of several
different solid area fraction ¢ with respect to the exten-
sional strain & The average horizontal distance slightly
increases and the average vertical distance slightly
decreases as a function of strain. This means that the par-
ticle distribution becomes slightly anisotropic, which can
also be noticed in Fig. 8. We believe that the anisotropic

Korea-Australia Rheology Journal

plotted quantity is the distribution of the shear rate II,: &1
=0, 0.5 and 1 (from the top to the bottom). (Reproduced
from Hwang and Hulsen, 2006).
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Fig. 9. The bulk relative elongational viscosity 7, of the 100
particle problems as a function of the extensional strain &
=gt for several values of the solid area fraction ¢
(Reproduced from Hwang and Hulsen, 2006).

distribution here explains the slight increase in elongational
viscosity as a function of strain. (For more details of anal-
ysis with other examples, refer to Hwang and Hulsen
(2006).)

5. Conclusions and future works
In this work, we present a review for the authors' pre-

vious works (Hwang et al., 2004a; 2004b; 2005; Chung et
al., 2005; Hwang and Hulsen, 2006) on direct numerical
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simulations for inertialess hard particle suspensions for-
mulated either with a Newtonian fluid or with viscoelastic
polymeric fluids to understand the microstructural evolu-
tion and the bulk material behavior. In our work, we
employ two well-defined bi-periodic domain concepts such
that a single cell problem with a small number of particles
may represent a large number of repeated structures: one is
the sliding bi-periodic frame for simple shear flow and the
other is the extensional bi-periodic frame for planar elon-
gational flow. Main features of our direct simulation
method can be summarized as follows:

o for simple shear flow, the sliding bi-periodic frame
concept of Lees and Edwards (1972) for discrete par-
ticles has been extended to continuous fields and com-
bined with the velocity-pressure formulation of the
fictitious-domain/finite-element method;

o for planar elongational flow, the extensional bi-periodic
frame concept of Heyes (1985) has been combined
with the velocity-pressure formulation of the fictitious-
domain/finite-element method;

e inertialess particles are described by their boundaries
only (the rigid-ring description), eliminating domain
discretization of particles, which allows general treat-
ments of boundary-crossing particles;

o for accurate and stable computation of viscoelastic
flows, the sliding bi-periodic domain concept has been
combined with the DEVSS/DG finite-element method.

With this numerical scheme, we have attempted to
understand the formation of microstructure, which is deter-
mined by complex rheology of the fluid medium and
hydrodynamic interaction between fluid and particles, and
its inter-relationship with the bulk rheogical properties of
particle suspensions. Concentrating on 2-D circular disk
particles, we discussed the bulk rheology of the suspen-
sions and the micro-structural developments through the
review of three numerical examples: the first one is for sin-
gle particle in an Oldroyd-B fluid in sliding bi-periodic
frame, the second is for six particles in the same fluid in
sliding bi-periodic frame, and the last one for 100 particles
problem in an extensional bi-periodic frame. In fact, the
present scheme can be easily applied to 3-D problems
without any significant modification and some preliminary
results on this can be found in Hwang et al. (2004c). It can
also be extended non-circular/non-spherical particle sus-
pensions and some preliminary results on elliptic particle
suspensions can be found in Chung er al. (2005).
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