• Title/Summary/Keyword: Cell-based sensor

Search Result 186, Processing Time 0.027 seconds

CD72 is a Negative Regulator of B Cell Responses to Nuclear Lupus Self-antigens and Development of Systemic Lupus Erythematosus

  • Takeshi Tsubata
    • IMMUNE NETWORK
    • /
    • v.19 no.1
    • /
    • pp.1.1-1.13
    • /
    • 2019
  • Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disease characterized by production of autoantibodies to various nuclear antigens and overexpression of genes regulated by IFN-I called IFN signature. Genetic studies on SLE patients and mutational analyses of mouse models demonstrate crucial roles of nucleic acid (NA) sensors in development of SLE. Although NA sensors are involved in induction of antimicrobial immune responses by recognizing microbial NAs, recognition of self NAs by NA sensors induces production of autoantibodies to NAs in B cells and production of IFN-I in plasmacytoid dendritic cells. Among various NA sensors, the endosomal RNA sensor TLR7 plays an essential role in development of SLE at least in mouse models. CD72 is an inhibitory B cell co-receptor containing an immunoreceptor tyrosine-based inhibition motif (ITIM) in the cytoplasmic region and a C-type lectin like-domain (CTLD) in the extracellular region. CD72 is known to regulate development of SLE because CD72 polymorphisms associate with SLE in both human and mice and CD72-/- mice develop relatively severe lupus-like disease. CD72 specifically recognizes the RNA-containing endogenous TLR7 ligand Sm/RNP by its extracellular CTLD, and inhibits B cell responses to Sm/RNP by ITIM-mediated signal inhibition. These findings indicate that CD72 inhibits development of SLE by suppressing TLR7-dependent B cell response to self NAs. CD72 is thus involved in discrimination of self-NAs from microbial NAs by specifically suppressing autoimmune responses to self-NAs.

A Web-based Realtime Monitoring System for Photobioreactor (웹-기반 실시간 광생물 반응기 모니터링 시스템)

  • Sung, Won-Ki;Kim, Sung-Soo;Lee, Je-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4341-4348
    • /
    • 2012
  • This paper presents a web-based real-time monitoring system for a photobioreactor using an WiFi wireless network. An WiFi interface can support high speed data transfer, up to 11Mbps and it can be compatible with commercial wireless LAN environment. Thus, the proposed cell culture based on WiFi network can be easily applied to the reconfigurable system and real-time monitoring system. In this paper, we integrate the commercial WiFi module to the various bio-sensors and sensor control board to configure the wireless network. After we evaluate application S/W for monitoring the environment within incubator, we verify the proposed sensor networks for a cell culture system and its monitoring system. This result can be applicable for various bio-applications that require the network configuration and real-time monitoring system.

An Empirical Study on Machine Learning based Smart Device Lithium-Ion Cells Capacity Estimation (머신러닝 기반 스마트 단말기 Lithium-Ion Cell의 잔량 추정 방법의 실증적 연구)

  • Jang, SungJin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.797-802
    • /
    • 2020
  • Over the past few years, smart devices, including smartphones, have been continuously required by users based on portability. The performance is improving. Ubiquitous computing environment and sensor network are also improved. Due to various network connection technologies, mobile terminals are widely used. Smart terminals need technology to make energy monitoring more detailed for more stable operation during use. The smart terminal which is light in small size generates the power shortage problem due to the various multimedia task among the terminal operation. Various estimation hardwares have been developed to prevent such situation in advance and to operate stable terminals. However, the method and performance of estimating the remaining amount are not relatively good. In this paper, we propose a method for estimating the remaining amount of smart terminals. The Capacity Estimation of lithium ion cells for stable operation was estimated based on machine learning. Learning the characteristics of lithium ion cells in use, not the existing hardware estimation method, through a map learning algorithm using machine learning technique The optimized results are estimated and applied.

u-EMS : An Emergency Medical Service based on Ubiquitous Sensor Network using Bio-Sensors (u-EMS : 바이오 센서 네트워크 기반의 응급 구조 시스템)

  • Kim, Hong-Kyu;Moon, Seung-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.7
    • /
    • pp.433-441
    • /
    • 2007
  • The bio-Sensors, which are sensing the vital signs of human bodies, are largely used by the medical equipment. Recently, the sensor network technology, which composes of the sensor interface for small-seize hardware, processor, the wireless communication module and battery in small sized hardware, has been extended to the area of bio-senor network systems due to the advances of the MEMS technology. In this paper we have suggested a design and implementation of a health care information system(called u-EMS) using a bio-sensor network technology that is a combination of the bio-sensor and the sensor network technology. In proposed system, we have used the following vital body sensors such as EKG sensor, the blood pressure sensor, the heart rate sensor, the pulse oximeter sensor and the glucose sensor. We have collected various vital sign data through the sensor network module and processed the data to implement a health care measurement system. Such measured data can be displayed by the wireless terminal(PDA, Cell phone) and the digital-frame display device. Finally, we have conducted a series of tests which considered both patient's vital sign and context-awared information in order to improve the effectiveness of the u-EMS.

pH Measurements with a Microcantilever Array-Based Biosensor System

  • Hur, Shin;Jung, Young-Do
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.186-191
    • /
    • 2012
  • In this paper, we present a pH measurement method that uses a microcantilever-array-based biosensor system. It is composed of microcantilever array, liquid cell, micro syringe pump, laser diode array, position sensitive detector, data acquisition device, and data processing software. Four microcantilevers are functionalized with pH-sensitive MHA(mercaptohexadecanoic acid) as a probe, while three microcantilevers are functionalized with HDT(hexadecane thiol) as reference. We prepare PBS(phosphate buffered saline) solutions of different pH and inject them into the liquid cell with a predefined volumetric speed at regular time intervals. The functionalized mircocantilevers in the liquid cell deflect as a self-assembled monolayer on the microcantilever binds with probe molecules in the solution. The difference in deflection between the MHA-covered probe microcantilever and the HDT-covered reference microcantilever was used to compensate for thermal drift. The deflection difference clearly increases with increasing pH in the solution. It was shown that when the pH values of the PBS solutions are high, there were large variations in the deflection of microcantilevers, whereas there were small variations for low pH value. The experimental results show that the microcantilever array functionalized with MHA and HDT can detect pH value with good repeatability.

Development of Grid Observation Model for Particle Filter-based Mobile Robot Localization using Sonar Grid Map (초음파 격자 지도를 이용한 파티클 필터 기반의 이동로봇 위치 추정을 위한 격자 관측 모델의 개발)

  • Park, Byungjae;Lee, Se-Jin;Chung, Wan Kyun;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.308-316
    • /
    • 2013
  • This paper proposes an observation model for a particle filter-based localization using a sonar grid map. The proposed model estimates a predicted observation by considering the properties of a sonar sensor which has a large angular uncertainty. The proposed model searches a grid which has the highest probability to reflect a sonar beam using the following procedures; (1) the reliable area of a single sonar data is determined using the footprint association model; (2) the detection probability of each grid cell in a sonar beam coverage in estimated. The proposed model was applied to the particle filter based localization, and was verified by experiments in indoor environments.

Touchpad for Force and Location Sensing

  • Kim, Dong-Ki;Kim, Jong-Ho;Kwon, Hyun-Joon;Kwon, Young-Ha
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.722-728
    • /
    • 2010
  • This paper presents the design and fabrication model of a touchpad based on a contact-resistance-type force sensor. The touchpad works as a touch input device, which can sense contact location and contact force simultaneously. The touchpad is 40 mm wide and 40 mm long. The touchpad is fabricated by using a simple screen printing technique. The contact location is evaluated by the calibration setup, which has a load cell and three-axis stages. The location error is approximately 4 mm with respect to x-axis and y-axis directions. The force response of the fabricated touchpad is obtained at three points by loading and unloading of the probe. The touchpad can detect loads from 0 N to 2 N. The touchpad shows a hysteresis error rate of about 11% and uniformity error rate of about 3%.

Synergy of monitoring and security

  • Casciati, Sara;Chen, Zhi Cong;Faravelli, Lucia;Vece, Michele
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.743-751
    • /
    • 2016
  • An ongoing research project is devoted to the design and implementation of a satellite based asset tracking for supporting emergency management in crisis operations. Due to the emergency environment, one has to rely on a low power consumption wireless communication. Therefore, the communication hardware and software must be designed to match requirements, which can only be foreseen at the level of more or less likely scenarios. The latter aspect suggests a deep use of a simulator (instead of a real network of sensors) to cover extreme situations. The former power consumption remark suggests the use of a minimal computer (Raspberry Pi) as data collector.

High Resolution Analysis for Defective Pixels Detection using a Low Resolution Camera

  • Gibour, Veronique;Leroux, Thierry;Bloyet, Daniel
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.856-859
    • /
    • 2002
  • A system for high-resolution analysis of defective elementary cell (R, G or B) on Flat Panel Display (FPD) is described. Based on multiple acquisitions of low-resolution shifted images of the display, our system doesn't require a high-resolution sensor neither tedious alignment of the display, and will remain up to date even facing an important increase of the display dimensions. Our process, highly automated and thus flexible and robust, is expected to perform a full analysis in less than 60s. It is mainly intended for production tests and display classification by manufacturers.

  • PDF