• Title/Summary/Keyword: Cell labeling

Search Result 312, Processing Time 0.026 seconds

Cell-SELEX Based Identification of an RNA Aptamer for Escherichia coli and Its Use in Various Detection Formats

  • Dua, Pooja;Ren, Shuo;Lee, Sang Wook;Kim, Joon-Ki;Shin, Hye-su;Jeong, OK-Chan;Kim, Soyoun;Lee, Dong-Ki
    • Molecules and Cells
    • /
    • v.39 no.11
    • /
    • pp.807-813
    • /
    • 2016
  • Escherichia coli are important indicator organisms, used routinely for the monitoring of water and food safety. For quick, sensitive and real-time detection of E. coli we developed a 2'F modified RNA aptamer Ec3, by Cell-SELEX. The 31 nucleotide truncated Ec3 demonstrated improved binding and low nano-molar affinity to E. coli. The aptamer developed by us out-performs the commercial antibody and aptamer used for E. coli detection. Ec3(31) aptamer based E. coli detection was done using three different detection formats and the assay sensitivities were determined. Conventional Ec3(31)-biotin-streptavidin magnetic separation could detect E. coli with a limit of detection of $1.3{\times}10^6CFU/ml$. Although, optical analytic technique, biolayer interferometry, did not improve the sensitivity of detection for whole cells, a very significant improvement in the detection was seen with the E. coli cell lysate ($5{\times}10^4CFU/ml$). Finally we developed Electrochemical Impedance Spectroscopy (EIS) gap capacitance biosensor that has detection limits of $2{\times}10^4CFU/mL$ of E. coli cells, without any labeling and signal amplification techniques. We believe that our developed method can step towards more complex and real sample application.

Expression Patterns of Cancer Stem Cell Markers During Specific Celecoxib Therapy in Multistep Rat Colon Carcinogenesis Bioassays

  • Salim, Elsayed I;Hegazi, Mona M;Kang, Jin Seok;Helmy, Hager M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1023-1035
    • /
    • 2016
  • The purpose of this study was to investigate the role of colon cancer stem cells (CSCs) during chemically-induced rat multi-step colon carcinogenesis with or without the treatment with a specific cyclooxygenase-2 inhibitor drug (celecoxib). Two experiments were performed, the first, a short term 12 week colon carcinogenesis bioassay in which only surrogate markers for colon cancer, aberrant crypt foci (ACF) lesions, were formed. The other experiment was a medium term colon cancer rat assay in which tumors had developed after 32 weeks. Treatment with celecoxib lowered the numbers of ACF, as well as the tumor volumes and multiplicities after 32 weeks. Immunohistochemical proliferating cell nuclear antigen (PCNA) labeling indexes LI (%) were downregulated after treatment by celecoxib. Also different cell surface antigens known to associate with CSCs such as the epithelial cell adhesion molecule (EpCAM), CD44 and CD133 were compared between the two experiments and showed differential expression patterns depending on the stage of carcinogenesis and treatment with celecoxib. Flow cytometric analysis demonstrated that the numbers of CD133 cells were increased in the colonic epithelium after 12 weeks while those of CD44 but not CD133 cells were increased after 32 weeks. Moreover, aldehyde dehydrogenase-1 activity levels in the colonic epithelium (a known CSC marker) detected by ELISA assay were found down-regulated after 12 weeks, but were up-regulated after 32 weeks. The data have also shown that the protective effect of celecoxib on these specific markers and populations of CSCs and on other molecular processes such as apoptosis targeted by this drug may vary depending on the genetic and phenotypic stages of carcinogenesis. Therefore, uncovering these distinction roles of CSCs during different phases of carcinogenesis and during specific treatment could be useful for targeted therapy.

In Vitro Antitumor Properties of an Isolate from Leaves of Cassia alata L

  • Olarte, Elizabeth Iglesias;Herrera, Annabelle Aliga;Villasenor, Irene Manese;Jacinto, Sonia Donaldo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3191-3196
    • /
    • 2013
  • Leaf extracts of Cassia alata L (akapulko), traditionally used for treatment of a variety of diseases, were evaluated for their potential antitumor properties in vitro. MTT assays were used to examine the cytotoxic effects of crude extracts on five human cancer cell lines, namely MCF-7, derived from a breast carcinoma, SK-BR-3, another breast carcinoma, T24 a bladder carcinoma, Col 2, a colorectal carcinoma, and A549, a nonsmall cell lung adenocarcinoma. Hexane extracts showed remarkable cytotoxicity against MCF-7, T24, and Col 2 in a dose-dependent manner. This observation was confirmed by morphological investigation using light microscopy. Further bioassay-directed fractionation of the cytotoxic extract led to the isolation of a TLC-pure isolate labeled as f6l. Isolate f6l was further evaluated using MTT assay and morphological and biochemical investigations, which likewise showed selectivity to MCF-7, T24, and Col 2 cells with $IC_{50}$ values of 16, 17, and 17 ${\mu}g/ml$, respectively. Isolate f6l, however, showed no cytotoxicity towards the non-cancer Chinese hamster ovarian cell line (CHO-AA8). Cytochemical investigation using DAPI staining and biochemical investigation using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-a method used to detect DNA fragmentation-together with caspase assay, demonstrated apoptotic cell death. Spectral characterization of isolate f6l revealed that it contained polyunsaturated fatty acid esters. Considering the cytotoxicity profile and its mode of action, f6l might represent a new promising compound with potential for development as an anticancer drug with low or no toxicity to non-cancer cells used in this study.

Two-Cell Spheroid Angiogenesis Assay System Using Both Endothelial Colony Forming Cells and Mesenchymal Stem Cells

  • Shah, Sajita;Kang, Kyu-Tae
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.474-480
    • /
    • 2018
  • Most angiogenesis assays are performed using endothelial cells. However, blood vessels are composed of two cell types: endothelial cells and pericytes. Thus, co-culture of two vascular cells should be employed to evaluate angiogenic properties. Here, we developed an in vitro 3-dimensional angiogenesis assay system using spheroids formed by two human vascular precursors: endothelial colony forming cells (ECFCs) and mesenchymal stem cells (MSCs). ECFCs, MSCs, or ECFCs+MSCs were cultured to form spheroids. Sprout formation from each spheroid was observed for 24 h by real-time cell recorder. Sprout number and length were higher in ECFC+MSC spheroids than ECFC-only spheroids. No sprouts were observed in MSC-only spheroids. Sprout formation by ECFC spheroids was increased by treatment with vascular endothelial growth factor (VEGF) or combination of VEGF and fibroblast growth factor-2 (FGF-2). Interestingly, there was no further increase in sprout formation by ECFC+MSC spheroids in response to VEGF or VEGF+FGF-2, suggesting that MSCs stimulate sprout formation by ECFCs. Immuno-fluorescent labeling technique revealed that MSCs surrounded ECFC-mediated sprout structures. We tested vatalanib, VEGF inhibitor, using ECFC and ECFC+MSC spheroids. Vatalanib significantly inhibited sprout formation in both spheroids. Of note, the $IC_{50}$ of vatalanib in ECFC+MSC spheroids at 24 h was $4.0{\pm}0.40{\mu}M$, which are more correlated with the data of previous animal studies when compared with ECFC spheroids ($0.2{\pm}0.03{\mu}M$). These results suggest that ECFC+MSC spheroids generate physiologically relevant sprout structures composed of two types of vascular cells, and will be an effective pre-clinical in vitro assay model to evaluate pro- or anti-angiogenic property.

Fine Structure of the Epithelial Apoptosis in the Anuran Tadpole Rana nigromaculata (참개구리(Rana nigromaculata) 유생기 상피 세포사의 미세구조)

  • Lee, Hye-Won;Moon, Myung-Jin
    • Applied Microscopy
    • /
    • v.40 no.2
    • /
    • pp.81-88
    • /
    • 2010
  • The fine structural characteristics of the apoptotic cells in the cutaneous epithelium of the anuran tadpole of the black-spotted frog, Rana nigromaculata was examined using the TUNEL (Terminal deoxynucleotidyl transferase-mediated biotinylated d-Uridine triphosphate Nick End Labeling) staining technique and TEM (transmission electron microscopy) observations. The cutaneous epithelium of the tadpole was composed of stratified cuboidal cells and the apoptotic cell death was observed continuously during the tail degeneration stages from the Shumway stage number 31 to 33. The early apoptotic cells shown in the epithelium demonstrated condensation and margination of the chromatin material at the nuclear periphery, and nuclear breakdown and cytoplasmic condensation were followed. Subsequent cytoplasmic degeneration of the apoptotic cell were produced by membrane-bounded cell fragments with relatively well preserved organelles. Following the processes of autophagic degradation, the late apoptotic cells being phagocytosed by other surrounding cells. These nearby cells, presumptive intraepithelial macrophages, contain a variety of lysosomal residual bodies which fuses with other cell organelles or other cytoplasmatic material to form secondary lysosomes. They are soon transformed into lamellar shaped vesicles and finally disappeared during the process of degradation.

XENOTRANSPLANT OF HUMAN BONE MARROW STROMAL CELLS; EFFECT ON THE REGENERATION OF AXOTOMIZED INFRAORBITAL NERVE IN RATS (인간 골수 기질세포 이종이식이 백서의 축삭절단 안와하 신경 재생에 미치는 효과)

  • Park, Eun-Jin;Kim, Eun-Seok;Kim, Jin-Man;Kim, Hyun-Ok;Yum, Kwang-Won
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.3
    • /
    • pp.239-247
    • /
    • 2005
  • This study demonstrated that xenogenic human marrow mesenchymal stem cells (hMSCs) could elicit the regeneration of the sensory nerve after axotomy in the adult rats infraorbital nerves without immunosuppression. For this, we evaluated the behavioral testing for functional recovery of the nerve and histological findings at weeks 3 and 5 compared to controls. Xenogenic hMSCs did not evoke any significant inflammatory or immunologic reaction after systemic and local administrations. HMSCs-treated rats exhibited significant improvement on sensory recovery tested with von Frey monofilaments. At 5 postoperative weeks, in the hMSCs treated nerve, expression of myelin basic protein (MBP), neurofilament (NF) at the site of axotomy was higher than control. And mRNA expression of neurotropin receptor Trk precursor (TrkPre), nerve growth factor receptor (NGFR) and neuropeptide (NPY) in trigeminal ganglion were also higher. The number of myelinated nerve at distal stump and cells in trigeminal ganglion were higher in hMSC treated rats. So it was supposed that transplanted MSCs contributed to reducing post-traumatic degeneration and production of neurotrophic factors. Immunofluorescence labeling showed small portion of hMSCs (<10%) expressed a phenotypic marker of Schwann cell (S-100). Xenogenic or allogenic mesenchymal stem cells might have immune privileged characteristics and useful tool for cell based nerve repair.

Anti-tumor Effect of Amygdalin extracted from Armeniacae Amarum Semen on Human Cervical Cancer Cell ME-180 (행인(杏仁)에서 추출한 Amygdalin의 자궁경부암세포 ME-180에 대한 항암 효과)

  • Choi, Yong-Seok;Kim, Youn-Sub;Kim, Gyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.32 no.3
    • /
    • pp.1-12
    • /
    • 2019
  • Objectives: Amygdalin is abundant in the seeds of bitter almond and apricots of the Prunus genus and other rosaceous plants. Amygdalin is known to have antitussive and anticancer activities. Apoptosis, also known as programmed cell death, is an important mechanism in cancer treatment. Methods: In the present study, we investigated whether the aqueous extract of Amygdalin induces apoptotic cell death in ME-180 cervical cancer cells. For this study, 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, terminal deoxynuclotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) assay, 4,6-diamidino-2-phenylindole (DAPI) staining, flow cytometric analysis, DNA fragmentation assay, Western blot, and caspase-3 enzyme assay were performed on ME-180 cervical cancer cells. Results: Through morphological and biochemical analyses, it was demonstrated that ME-180 cells treated with Amygdalin exhibit several apoptotic features. The treatment of Amygdalin increased the Bax expression and caspase-3 enzyme activity and decreased Bcl-2 expression. Here, we have shown that Amygdalin induces apoptotic cell death in ME-180 cervical cancer cells through Bax-dependent caspase-3 activation. These results suggest the possibility that Amygdalin exerts anti-tumor effect on human cervical cancer.

Germ Cell Apoptosis in the Testis of Transgenic Pigs

  • Chung, Hak-Jae;Kim, Bong-Ki;Ko, Yeoung-Gyu;Woo, Jei-Hyun;Kim, Jeom-Soon;Jung, Jin-Kwan;Chang, Won-Kyong
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.233-233
    • /
    • 2004
  • PURPOSE: Gene expression and apoptosis in testicular germ cells has been demonstrated in many transgenic animals. However, little is known about the transgenic pig and rates of apoptosis during spermatogenesis. METHODS : Morphological and biochemical features of apoptosis reported in other species were used to confirm that the TdT-mediated dUTP Nick end labeling (TUNEL) assay is an acceptable mothos for idendtification and quantification of apoptotic transgenic germ cells in histological tissue section from transgenic pig testis. (omitted)

  • PDF

Binding of Tp92 homolog of Treponema denticola to fibronectin and epithelial cells

  • Jun, Hye-Kyoung;Lee, Sung-Hoon;Lee, Hae-Ri;Choi, Bong-Kyu
    • International Journal of Oral Biology
    • /
    • v.33 no.2
    • /
    • pp.45-50
    • /
    • 2008
  • Treponema denticola is the best studied oral spirochete and numerous studies have shown that it is strongly associated with periodontitis and expresses several putative virulence factors. In this study, we report on a surface protein of T. denticola, Td92, which is homologous to Tp92 of Treponema pallidum, an agent of syphilis. Immunofluorescence assay and immunogold labeling with anti-Td92 Ab revealed that Td92 had surface-exposed epitopes. And Td92 was capable of binding to fibronectin and KB cells, an oral epithelial cell line. In addition, Td92 could enter the KB cells. These results indicate that Td92 is a fibronectin-binding protein which can bind to and internalize into the host cells, facilitating the virulence of T. denticola.

Albumin-conjugated Cadmium Sulfide Nanoparticles and their Interaction with KB Cells

  • Selim, K.M. Kamruzzaman;Kang, Inn-Kyu;Guo, Haiqing
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.403-410
    • /
    • 2009
  • Cytotoxicity is a severe problem of cadmium sulfide nanoparticles(CSNPs) for use in biological systems. In the present study, mercaptoacetic acid-coated CSNPs were conjugated with bovine serum albumin (BSA) to improve biocompatibility. The surface properties of the CSNPs and albumin-conjugated CSNPs (ACSNPs) were characterized by XRD, UV, FTIR, EA, TEM and DLS. Human breast cancer cells (KB cells) were then cultured in the presence of the nanoparticles to evaluate the cytotoxicity of CSNPs and ACSNPs. Finally, the fluorescence intensity of the nanoparticles' aqueous solution was examined using a fluorescence spectrometer. The results showed that the cell compatibility and fluorescence intensity of ACSNPs were higher than those of CSNPs. The strongly luminescent features of the biocompatible ACSNPs are promising for use in biological fields such as cellular labeling, intracellular tracking and molecular imaging.