DOI QR코드

DOI QR Code

Cell-SELEX Based Identification of an RNA Aptamer for Escherichia coli and Its Use in Various Detection Formats

  • Dua, Pooja (Global Research Laboratory (GRL) for RNAi Medicine, Department of Chemistry, Sungkyunkwan University (SKKU)) ;
  • Ren, Shuo (Department of Bioengineering, Dongguk University) ;
  • Lee, Sang Wook (Department of Bioengineering, Dongguk University) ;
  • Kim, Joon-Ki (Global Research Laboratory (GRL) for RNAi Medicine, Department of Chemistry, Sungkyunkwan University (SKKU)) ;
  • Shin, Hye-su (Global Research Laboratory (GRL) for RNAi Medicine, Department of Chemistry, Sungkyunkwan University (SKKU)) ;
  • Jeong, OK-Chan (Department of Biomedical Engineering and School of Mechanical Engineering, Inje University) ;
  • Kim, Soyoun (Department of Bioengineering, Dongguk University) ;
  • Lee, Dong-Ki (Global Research Laboratory (GRL) for RNAi Medicine, Department of Chemistry, Sungkyunkwan University (SKKU))
  • Received : 2016.06.07
  • Accepted : 2016.10.18
  • Published : 2016.11.30

Abstract

Escherichia coli are important indicator organisms, used routinely for the monitoring of water and food safety. For quick, sensitive and real-time detection of E. coli we developed a 2'F modified RNA aptamer Ec3, by Cell-SELEX. The 31 nucleotide truncated Ec3 demonstrated improved binding and low nano-molar affinity to E. coli. The aptamer developed by us out-performs the commercial antibody and aptamer used for E. coli detection. Ec3(31) aptamer based E. coli detection was done using three different detection formats and the assay sensitivities were determined. Conventional Ec3(31)-biotin-streptavidin magnetic separation could detect E. coli with a limit of detection of $1.3{\times}10^6CFU/ml$. Although, optical analytic technique, biolayer interferometry, did not improve the sensitivity of detection for whole cells, a very significant improvement in the detection was seen with the E. coli cell lysate ($5{\times}10^4CFU/ml$). Finally we developed Electrochemical Impedance Spectroscopy (EIS) gap capacitance biosensor that has detection limits of $2{\times}10^4CFU/mL$ of E. coli cells, without any labeling and signal amplification techniques. We believe that our developed method can step towards more complex and real sample application.

Keywords

References

  1. Akbari, E.,Buntat, Z.,Afroozeh, A.,Zeinalinezhad, A., and Nikoukar, A. (2015). Escherichia coli bacteria detection by using graphenebased biosensor. IET Nanobiotechnol. 9, 273-279. https://doi.org/10.1049/iet-nbt.2015.0010
  2. Amaya-Gonzalez, S., de-los-Santos-Alvarez, N., Miranda-Ordieres, A.J., and Lobo-Castanon, M.J. (2013). Aptamer-based analysis:a promising alternative for food safety control. Sensors 13, 16292-16311. https://doi.org/10.3390/s131216292
  3. Arora, P., Sindhu, A., Dilbaghi, N., and Chaudhury, A. (2011). Biosensors as innovative tools for the detection of food borne pathogens. Biosens. Bioelectron. 28, 1-12. https://doi.org/10.1016/j.bios.2011.06.002
  4. Arthur, T.M., Bosilevac, J.M., Nou, X., and Koohmaraie, M. (2005). Evaluation of culture- and PCR-based detection methods for Escherichia coli O157:H7 in inoculated ground beeft. J. Food Protection 68, 1566-1574. https://doi.org/10.4315/0362-028X-68.8.1566
  5. Brosel-Oliu, S., Uria, N., Abramova, N., and Bratov, A. (2015). Impedimetric sensors for bacteria detection, biosensors - micro and nanoscale applications. In nanotechnology and nanomaterials. Biosensors - Micro and Nanoscale Applications", T. Rinken, ed.
  6. Burrs, S.L., Bhargava, M., Sidhu, R., Kiernan-Lewis, J., Gomes, C., Claussen, J.C., and McLamore, E.S. (2016). A paper based graphene-nanocauliflower hybrid composite for point of care biosensing. Biosens. Bioelectron. 85, 479-487. https://doi.org/10.1016/j.bios.2016.05.037
  7. Concepcion, J., Witte, K., Wartchow, C., Choo, S., Yao, D., Persson, H., Wei, J., Li, P., Heidecker, B., Ma, W., et al. (2009). Label-free detection of biomolecular interactions using BioLayer interferometry for kinetic characterization. Comb. Chem. High Throughput Screen. 12, 791-800. https://doi.org/10.2174/138620709789104915
  8. Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic. Acids Res. 16, 10881-10890. https://doi.org/10.1093/nar/16.22.10881
  9. Dua, P., S, S., Kim, S., and Lee, D.K. (2015). ALPPL2 aptamermediated targeted delivery of 5-Fluoro-2'-Deoxyuridine to pancreatic cancer. Nucleic Acid Ther. 25, 180-187. https://doi.org/10.1089/nat.2014.0516
  10. Guo, X., Kulkarni, A., Doepke, A., Halsall, H.B., Iyer, S., and Heineman, W.R. (2012). Carbohydrate-based label-free detection of Escherichia coli ORN 178 using electrochemical impedance spectroscopy. Anal. Chem. 84, 241-246. https://doi.org/10.1021/ac202419u
  11. Huang, C.J., Dostalek, J., Sessitsch, A., and Knoll, W. (2011). Longrange surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of E. coli O157:H7. Anal. Chem. 83, 674-677. https://doi.org/10.1021/ac102773r
  12. Kammer, M.N., Olmsted, I.R., Kussrow, A.K., Morris, M.J., Jackson, G.W., and Bornhop, D.J. (2014). Characterizing aptamer small molecule interactions with backscattering interferometry. Analyst 139, 5879-5884. https://doi.org/10.1039/C4AN01227E
  13. Kim, Y.S., Song, M.Y., Jurng, J., and Kim, B.C. (2013). Isolation and characterization of DNA aptamers against Escherichia coli using a bacterial cell-systematic evolution of ligands by exponential enrichment approach. Anal. Biochem. 436, 22-28. https://doi.org/10.1016/j.ab.2013.01.014
  14. Koedrith, P.,Thasiphu, T., Weon, J.I., Boonprasert, R., Tuitemwong, K., and Tuitemwong, P. (2015). Recent trends in rapid environmental monitoring of pathogens and toxicants: potential of nanoparticle-based biosensor and applications. ScientificWorldJournal 2015, 510982.
  15. Lazcka, O., Del Campo, F.J., and Munoz, F.X. (2007). Pathogen detection: a perspective of traditional methods and biosensors. Biosens. Bioelectron. 22, 1205-1217. https://doi.org/10.1016/j.bios.2006.06.036
  16. Leclerc, H., Mossel, D.A., Edberg, S.C., and Struijk, C.B. (2001). Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Ann. Rev. Microbiol. 55, 201-234. https://doi.org/10.1146/annurev.micro.55.1.201
  17. Lee, H.J., Kim, B.C., Kim, K.W., Kim, Y.K., Kim, J., and Oh, M.K. (2009). A sensitive method to detect Escherichia coli based on immunomagnetic separation and real-time PCR amplification of aptamers. Biosens. Bioelectron. 24, 3550-3555. https://doi.org/10.1016/j.bios.2009.05.010
  18. Lee, Y.J., Han, S.R., Maeng, J.S., Cho, Y.J., and Lee, S.W. (2012). In vitro selection of Escherichia coli O157:H7-specific RNA aptamer. Biochem. Biophys. Res. Commun. 417, 414-420. https://doi.org/10.1016/j.bbrc.2011.11.130
  19. Li, Y., Afrasiabi, R., Fathi, F., Wang, N., Xiang, C., Love, R., She, Z., and Kraatz, H.B. (2014). Impedance based detection of pathogenic E. coli O157:H7 using a ferrocene-antimicrobial peptide modified biosensor. Biosens. Bioelectron. 58, 193-199. https://doi.org/10.1016/j.bios.2014.02.045
  20. Matzura, O., and Wennborg, A. (1996). RNAdraw: an integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows. Comput. Appl. Biosci. 12, 247-249.
  21. Mechaly, A., Cohen, H., Cohen, O., and Mazor, O. (2016). A biolayer interferometry-based assay for rapid and highly sensitive detection of biowarfare agents. Anal. Biochem. 506, 22-27. https://doi.org/10.1016/j.ab.2016.04.018
  22. Nistor, C., Osvik, A., Davidsson, R., Rose, A., Wollenberger, U., Pfeiffer, D., Emneus, J., and Fiksdal, L. (2002). Detection of Escherichia coli in water by culture-based amperometric and luminometric methods. Water Sci Technol. 45, 191-199.
  23. Ozalp, V.C., Bayramoglu, G., Kavruk, M., Keskin, B.B., Oktem, H.A., and Arica, M.Y. (2014). Pathogen detection by core-shell type aptamer-magnetic preconcentration coupled to real-time PCR. Anal. Biochem. 447, 119-125. https://doi.org/10.1016/j.ab.2013.11.022
  24. Pandey, C.M., Tiwari, I., Sumana, G. (2014). Hierarchical cystine flower based electrochemical genosensor for detection of Escherichia coli O157:H7. RSC Adv. 4, 31047-31055. https://doi.org/10.1039/C4RA04511D
  25. Paniel, N., Baudart, J., Hayat, A., and Barthelmebs, L. (2013). Aptasensor and genosensor methods for detection of microbes in real world samples. Methods 64, 229-240. https://doi.org/10.1016/j.ymeth.2013.07.001
  26. Park, S., Kim, H., Paek, S.H., Hong, J.W., and Kim, Y.K. (2008). Enzyme-linked immuno-strip biosensor to detect Escherichia coli O157:H7. Ultramicroscopy 108, 1348-1351. https://doi.org/10.1016/j.ultramic.2008.04.063
  27. Park, H.C., Baig, I.A., Lee, S.C., Moon, J.Y., and Yoon, M.Y. (2014). Development of ssDNA aptamers for the sensitive detection of Salmonella typhimurium and Salmonella enteritidis. Appl. Biochem. Biotechnol 174, 793-802. https://doi.org/10.1007/s12010-014-1103-z
  28. Robbens, J., Dardenne, F., Devriese, L., De Coen, W., and Blust, R. (2010). Escherichia coli as a bioreporter in ecotoxicology. App. Microbiol. Biotechnol. 88, 1007-1025. https://doi.org/10.1007/s00253-010-2826-6
  29. Settu, K., Chen, C.J., Liu, J.T., Chen, C.L., and Tsai, J.Z. (2015). Impedimetric method for measuring ultra-low E. coli concentrations in human urine. Biosens. Bioelectron. 66, 244-250. https://doi.org/10.1016/j.bios.2014.11.027
  30. Suh, S.H., Dwivedi, H.P., Choi, S.J., and Jaykus, L.A. (2014). Selection and characterization of DNA aptamers specific for Listeria species. Anal. Biochem. 459, 39-45. https://doi.org/10.1016/j.ab.2014.05.006
  31. Tortorello, M.L. (2003). Indicator organisms for safety and quality--uses and methods for detection: minireview. J. AOAC Int. 86, 1208-1217.
  32. Wang, H., Wang, Y., Jinghua, S.L., Xu, Y.W., Guo, Y., and Huang, J. (2014). An RNA aptamer-based electrochemical biosensor for sensitive detection of malachite green. RSC Adv. 4, 60987-60994 https://doi.org/10.1039/C4RA09850A
  33. Wu, W., Zhang, J., Zheng, M., Zhong, Y., Yang, J., Zhao, Y., Wu, W., Ye, W., Wen, J., Wang, Q., et al. (2012). An aptamer-based biosensor for colorimetric detection of Escherichia coli O157:H7. PloS One 7, e48999. https://doi.org/10.1371/journal.pone.0048999
  34. Zichel, R., Chearwae, W., Pandey, G.S., Golding, B., and Sauna, Z.E. (2012). Aptamers as a sensitive tool to detect subtle modifications in therapeutic proteins. PloS One 7, e31948. https://doi.org/10.1371/journal.pone.0031948

Cited by

  1. Critical Review: DNA Aptasensors, Are They Ready for Monitoring Organic Pollutants in Natural and Treated Water Sources? vol.52, pp.16, 2016, https://doi.org/10.1021/acs.est.8b00558
  2. Oligonucleotide aptamers: promising and powerful diagnostic and therapeutic tools for infectious diseases vol.77, pp.2, 2016, https://doi.org/10.1016/j.jinf.2018.04.007
  3. Application of Aptamer-Based Biosensor for Rapid Detection of Pathogenic Escherichia coli vol.18, pp.8, 2018, https://doi.org/10.3390/s18082518
  4. Comparison of Economically Favourable and Further Development Friendly DNA Isolation Methods from Microbial Cultures vol.10, pp.1, 2020, https://doi.org/10.4236/aim.2020.101001
  5. Research advances of DNA aptasensors for foodborne pathogen detection vol.60, pp.14, 2020, https://doi.org/10.1080/10408398.2019.1636763
  6. Binding Characteristics Study of DNA based Aptamers for E. coli O157:H7 vol.26, pp.1, 2016, https://doi.org/10.3390/molecules26010204
  7. Enlarging the Toolbox Against Antimicrobial Resistance: Aptamers and CRISPR-Cas vol.12, pp.None, 2016, https://doi.org/10.3389/fmicb.2021.606360
  8. Aptamers and Aptamer-Coupled Biosensors to Detect Water-Borne Pathogens vol.12, pp.None, 2021, https://doi.org/10.3389/fmicb.2021.643797
  9. A Low-Field Magnetic Resonance Imaging Aptasensor for the Rapid and Visual Sensing of Pseudomonas aeruginosa in Food, Juice, and Water vol.93, pp.24, 2016, https://doi.org/10.1021/acs.analchem.1c01669
  10. Electrochemical aptasensor for Escherichia coli O157:H7 bacteria detection using a nanocomposite of reduced graphene oxide, gold nanoparticles and polyvinyl alcohol vol.13, pp.27, 2016, https://doi.org/10.1039/d1ay00563d