DOI QR코드

DOI QR Code

Glucose and Insulin Stimulate Lipogenesis in Porcine Adipocytes: Dissimilar and Identical Regulation Pathway for Key Transcription Factors

  • Zhang, Guo Hua (College of Life Science and Engineering, Northwest University for Nationalities) ;
  • Lu, Jian Xiong (College of Life Science and Engineering, Northwest University for Nationalities) ;
  • Chen, Yan (College of Life Science and Engineering, Northwest University for Nationalities) ;
  • Dai, Hong Wei (College of Life Science and Engineering, Northwest University for Nationalities) ;
  • ZhaXi, YingPai (College of Life Science and Engineering, Northwest University for Nationalities) ;
  • Zhao, Yong Qing (Gansu Engineering Research Center for Animal Cell, Northwest University for Nationalities) ;
  • Qiao, Zi Lin (Gansu Engineering Research Center for Animal Cell, Northwest University for Nationalities) ;
  • Feng, Ruo Fei (College of Life Science and Engineering, Northwest University for Nationalities) ;
  • Wang, Ya Ling (College of Life Science and Engineering, Northwest University for Nationalities) ;
  • Ma, Zhong Ren (Gansu Engineering Research Center for Animal Cell, Northwest University for Nationalities)
  • Received : 2016.07.07
  • Accepted : 2016.10.20
  • Published : 2016.11.30

Abstract

Lipogenesis is under the concerted action of ChREBP, SREBP-1c and other transcription factors in response to glucose and insulin. The isolated porcine preadipocytes were differentiated into mature adipocytes to investigate the roles and interrelation of these transcription factors in the context of glucose- and insulin-induced lipogenesis in pigs. In ChREBP-silenced adipocytes, glucose-induced lipogenesis decreased by ~70%, however insulin-induced lipogenesis was unaffected. Moreover, insulin had no effect on ChREBP expression of unperturbed adipocytes irrespective of glucose concentration, suggesting ChREBP mediate glucose-induced lipogenesis. Insulin stimulated SREBP-1c expression and when SREBP-1c activation was blocked, and the insulin-induced lipogenesis decreased by ~55%, suggesting SREBP-1c is a key transcription factor mediating insulin-induced lipogenesis. $LXR{\alpha}$ activation promoted lipogenesis and lipogenic genes expression. In ChREBP-silenced or SREBP-1c activation blocked adipocytes, $LXR{\alpha}$ activation facilitated lipogenesis and SREBP-1c expression, but had no effect on ChREBP expression. Therefore, $LXR{\alpha}$ might mediate lipogenesis via SREBP-1c rather than ChREBP. When ChREBP expression was silenced and SREBP-1c activation blocked simultaneously, glucose and insulin were still able to stimulated lipogenesis and lipogenic genes expression, and $LXR{\alpha}$ activation enhanced these effects, suggesting $LXR{\alpha}$ mediated directly glucose- and insulin-induced lipogenesis. In summary, glucose and insulin stimulated lipogenesis through both dissimilar and identical regulation pathway in porcine adipocytes.

Keywords

References

  1. Aguiari, P., Leo, S., Zavan, B., Vindigni, V., Rimessi, A., Bianchi, K., Franzin, C., Cortivo, R., Rossato, M., Vettor, R., et al. (2008). High glucose induces adipogenic differentiation of musclederived stem cells. Proc. Natl. Acad. Sci. USA 105, 1226-1231. https://doi.org/10.1073/pnas.0711402105
  2. Bergen, W.G., and Mersmann, H.J. (2005). Comparative aspects of lipid metabolism: Impact on contemporary research and use of animal models. J. Nutr. 135, 2499-2502. https://doi.org/10.1093/jn/135.11.2499
  3. Cha, J.Y., and Repa, J.J. (2007). The liver x receptor (lxr) and hepatic lipogenesis - the carbohydrate-response element-binding protein is a target gene of lxr. J. Biol. Chem. 282, 743-751. https://doi.org/10.1074/jbc.M605023200
  4. Chen, G., Liang, G., Ou, J., Goldstein, J.L., and Brown. M.S. (2004). Central role for liver x receptor in insulin-mediated activation of srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc. Natl. Acad. Sci. USA 101, 11245-11250. https://doi.org/10.1073/pnas.0404297101
  5. Chen, W., Chen, G., Head, D.L., Mangelsdorf, D.J., and Russell, D.W. (2007). Enzymatic reduction of oxysterols impairs lxr signaling in cultured cells and the livers of mice. Cell Metab. 5, 73-79. https://doi.org/10.1016/j.cmet.2006.11.012
  6. Denechaud, P.D., Bossard, P., Lobaccaro, J.M., Millatt, L., Staels, B., Girard, J., and Postic, C. (2008). Chrebp, but not lxrs, is required for the induction of glucose-regulated genes in mouse liver. J. Clin. Invest. 118, 956-964.
  7. Dentin, R., Girard, J., and Postic, C. (2005). Carbohydrate responsive element binding protein (chrebp) and sterol regulatory element binding protein-1c (srebp-1c): Two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie 87, 81-86. https://doi.org/10.1016/j.biochi.2004.11.008
  8. Dentin, R., Tomas-Cobos, L., Foufelle, F., Leopold, J., Girard, J., Postic, C., and Ferre, P. (2012). Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of chrebp in response to glucose in the liver. J. Hepatol. 56, 199-209. https://doi.org/10.1016/j.jhep.2011.07.019
  9. Dodson, M.V., Hausman, G.J., Guan, L., Du, M., Rasmussen, T.P., Poulos, S.P., Mir, P., Bergen, W.G., Fernyhough, M.E., McFarland, D.C., et al. (2010). Lipid metabolism, adipocyte depot physiology and utilization of meat animals as experimental models for metabolic research. Int. J. Biol. Sci. 6, 691-699.
  10. Foufelle, F., Gouhot, B., Pegorier, J.P., Perdereau, D., Girard, J., and Ferre, P. (1992). Glucose stimulation of lipogenic enzyme gene expression in cultured white adipose tissue. A role for glucose 6-phosphate. J. Biol. Chem. 267, 20543-20546.
  11. He, Z., Jiang, T., Wang, Z., Levi, M., and Li. J. (2004). Modulation of carbohydrate response element-binding protein gene expression in 3t3-l1 adipocytes and rat adipose tissue. Am. J. Physiol. Endocrinol. Metab. 287, E424-430. https://doi.org/10.1152/ajpendo.00568.2003
  12. Hegarty, B.D., Bobard, A., Hainault, I., Ferre, P., Bossard, P., and Foufelle, F. (2005). Distinct roles of insulin and liver x receptor in the induction and cleavage of sterol regulatory element-binding protein-1c. Proc. Natl. Acad. Sci. USA 102, 791-796. https://doi.org/10.1073/pnas.0405067102
  13. Herman, M.A., Peroni, O.D., Villoria, J., Schon, M.R., Abumrad, N.A., Bluher, M., Klein, S., and Kahn, B.B. (2012). A novel chrebp isoform in adipose tissue regulates systemic glucose metabolism. Nature 484, 333-338. https://doi.org/10.1038/nature10986
  14. Horton, J.D., Bashmakov, Y., Shimomura, I., and Shimano, H. (1998). Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc. Natl. Acad. Sci. USA 95, 5987-5992. https://doi.org/10.1073/pnas.95.11.5987
  15. Horton, J.D., Shah, N.A., Warrington, J.A., Anderson, N.N., Park, S.W., Brown, M.S., and Goldstein, J.L. (2003). Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct srebp target genes. Proc. Natl. Acad. Sci. USA 100, 12027-12032. https://doi.org/10.1073/pnas.1534923100
  16. Hurtado del Pozo, C., Vesperinas-Garcia, G., Miguel-Angel, R., Corripio-SAnchez, R., Torres-Garcia, A.J., Obregon, M.J., and Calvo, R.M. (2011). Chrebp expression in the liver, adipose tissue and differentiated preadipocytes in human obesity. BBA - Mol. Cell. Bio. L. 1811, 1194-1200. https://doi.org/10.1016/j.bbalip.2011.07.016
  17. Ito, M., Nagasawa, M., Omae, N., Tsunoda, M., Ishiyama, J., Ide, T., Akasaka, Y., and Murakami, K. (2013). A novel jnk2/srebp-1c pathway involved in insulin-induced fatty acid synthesis in human adipocytes. J. Lipid Res. 54, 1531-1540. https://doi.org/10.1194/jlr.M031591
  18. Jakobsson, A., Jorgensen, J.A., and Jacobsson. A. (2005). Differential regulation of fatty acid elongation enzymes in brown adipocytes implies a unique role for elovl3 during increased fatty acid oxidation. Am. J. Physiol. Endocrinol. Metab. 289, E517-526. https://doi.org/10.1152/ajpendo.00045.2005
  19. Janowski, B.A., Grogan, M.J., Jones, S.A., Wisely, G.B., Kliewer, S.A., Corey, E.J., and Mangelsdorf, D.J. (1999). Structural requirements of ligands for the oxysterol liver x receptors lxralpha and lxrbeta. Proc. Natl. Acad. Sci. USA 96, 266-271. https://doi.org/10.1073/pnas.96.1.266
  20. Joseph, S.B., Laffitte, B.A., Patel, P.H., Watson, M.A., Matsukuma, K.E., Walczak, R., Collins, J.L., Osborne, T.F., and Tontonoz, P. (2002). Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver x receptors. J. Biol. Chem. 277, 11019-11025. https://doi.org/10.1074/jbc.M111041200
  21. Juvet, L.K., Andresen, S.M., Schuster, G.U., Dalen, K.T., Tobin, K.A., Hollung, K., Haugen, F., Jacinto, S., Ulven, S.M., Bamberg, K., et al. (2003). On the role of liver x receptors in lipid accumulation in adipocytes. Mol. Endocrinol. 17, 172-182. https://doi.org/10.1210/me.2001-0210
  22. Kamisuki, S., Mao, Q., Abu-Elheiga, L., Gu, Z., Kugimiya, A., Kwon, Y., Shinohara, T., Kawazoe, Y., Sato, S., Asakura, K., et al. (2009). A small molecule that blocks fat synthesis by inhibiting the activation of srebp. Chem. Biol. 16, 882-892. https://doi.org/10.1016/j.chembiol.2009.07.007
  23. Korach-Andre, M., Archer, A., Barros, R.P., Parini, P., and Gustafsson, J.A. (2011). Both liver-x receptor (lxr) isoforms control energy expenditure by regulating brown adipose tissue activity. Proc. Natl. Acad. Sci. USA 108, 403-408. https://doi.org/10.1073/pnas.1017884108
  24. Laffitte, B.A., Chao, L.C., Li, J., Walczak, R., Hummasti, S., Joseph, S.B., Castrillo, A., Wilpitz, D.C., Mangelsdorf, D.J., Collins, J.L., et al. (2003). Activation of liver x receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc. Natl. Acad. Sci. USA 100, 5419-5424. https://doi.org/10.1073/pnas.0830671100
  25. Lay, S.L., Lefrere, I., Trautwein, C., Dugail, I., and Krief. S. (2002). Insulin and sterol-regulatory element-binding protein-1c (srebp-1c) regulation of gene expression in 3t3-l1 adipocytes:Identification of ccaat/enhancer-binding protein ${\beta}$ as an srebp-1c target. J. Biol. Chem. 277, 35625-35634. https://doi.org/10.1074/jbc.M203913200
  26. Lehmann, J.M., Kliewer, S.A., Moore, L.B., Smith-Oliver, T.A., Oliver, B.B., Su, J.L., Sundseth, S.S., Winegar, D.A., Blanchard, D.E., Spencer, T.A., et al. (1997). Activation of the nuclear receptor lxr by oxysterols defines a new hormone response pathway. J. Biol. Chem. 272, 3137-3140. https://doi.org/10.1074/jbc.272.6.3137
  27. Li, M.V., Chen, W.Q., Harmancey, R.N., Nuotio-Antar, A.M., Imamura, M., and Saha, P. Taegtmeyer, H., Chan, L. (2010). Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (chrebp). Bioche. Bioph. Res. Co. 395, 395-400. https://doi.org/10.1016/j.bbrc.2010.04.028
  28. Louveau, I., and Gondret. F. (2004). Gh and insulin affect fatty acid synthase activity in isolated porcine adipocytes in culture without any modifications of sterol regulatory element binding protein-1 expression. J. Endocrinol. 181, 271-280. https://doi.org/10.1677/joe.0.1810271
  29. Mitro, N., Mak, P.A., Vargas, L., Godio, C., Hampton, E., Molteni, V., Kreusch, A., and Saez, E. (2007). The nuclear receptor lxr is a glucose sensor. Nature 445, 219-223. https://doi.org/10.1038/nature05449
  30. O'Hea, E.K., and Leveille, G.A. (1969). Significance of adipose tissue and liver as sites of fatty acid synthesis in the pig and the efficiency of utilization of various substrates for lipogenesis. J. Nutr. 99, 338-344. https://doi.org/10.1093/jn/99.3.338
  31. Ramirez-Zacarias, J.L., Castro-Munozledo, F., and Kuri-Harcuch, W. (1992). Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with oil red o. Histochem. Cell Biol. 97, 493-497.
  32. Repa, J.J., Liang, G., Ou, J., Bashmakov, Y., Lobaccaro, J.M., Shimomura, I., Shan, B., Brown, M.S., Goldstein, J.L., and Mangelsdorf, D.J. (2000). Regulation of mouse sterol regulatory element-binding protein-1c gene (srebp-1c) by oxysterol receptors, lxralpha and lxrbeta. Genes Dev. 14, 2819-2830. https://doi.org/10.1101/gad.844900
  33. Schultz, J.R., Tu, H., Luk, A., Repa, J.J., Medina, J.C., Li, L., Schwendner, S., Wang, S., Thoolen, M., Mangelsdorf, D.J., et al. (2000). Role of lxrs in control of lipogenesis. Genes Dev. 14, 2831-2838. https://doi.org/10.1101/gad.850400
  34. Seo, J.B., Moon, H.M., Kim, W.S., Lee, Y.S., Jeong, H.W., Yoo, E.J., Ham, J., Kang, H., Park, M.G., Steffensen, K.R., et al. (2004). Activated liver x receptors stimulate adipocyte differentiation through induction of peroxisome proliferatoractivated receptor gamma expression. Mol. Cell. Biol. 24, 3430-3444. https://doi.org/10.1128/MCB.24.8.3430-3444.2004
  35. Shimano, H., Yahagi, N., Amemiya-Kudo, M., Hasty, A.H., Osuga, J., Tamura, Y., Shionoiri, F., Iizuka, Y., Ohashi, K., Harada, K., et al. (1999). Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J. Biol. Chem. 274, 35832-35839. https://doi.org/10.1074/jbc.274.50.35832
  36. Uttarwar, L., Gao, B., Ingram, A.J., and Krepinsky, J.C. (2012). Srebp-1 activation by glucose mediates tgf-beta upregulation in mesangial cells. Am. J. Physiol. Renal. Physiol. 302, F329-341. https://doi.org/10.1152/ajprenal.00136.2011
  37. Uyeda, K., and Repa, J.J. (2006). Carbohydrate response element binding protein, chrebp, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Met. 4, 107-110. https://doi.org/10.1016/j.cmet.2006.06.008
  38. Uyeda, K., Yamashita, H., and Kawaguchi, T. (2002). Carbohydrate responsive element-binding protein (chrebp): A key regulator of glucose metabolism and fat storage. Biochem. Pharmacol. 63912, 2075-2080.
  39. Xu, X., So, J.S., Park, J.G., and Lee, A.H. (2013). Transcriptional control of hepatic lipid metabolism by srebp and chrebp. Semin. Liver Dis. 33, 301-311. https://doi.org/10.1055/s-0033-1358523
  40. Yamashita, H., Takenoshita, M., Sakurai, M., Bruick, R.K., Henzel, W.J., Shillinglaw, W., Arnot, D., and Uyeda, K. (2001). A glucoseresponsive transcription factor that regulates carbohydrate metabolism in the liver. Proc. Natl. Acad. Sci. USA 98, 9116-9121. https://doi.org/10.1073/pnas.161284298
  41. Yaqiu, L., Helin. Z., and Gongshe, Y. (2007). Effects of $RXR{\alpha}$ gene silencing on the porcine adipocyte differentiation on vitro. Comp. Biochem. Physi. D. 2, 207-214.
  42. Zanotti, I., Poti, F., Pedrelli, M., Favari, E., Moleri, E., Franceschini, G., Calabresi, L., and Bernini, F. (2008). The lxr agonist t0901317 promotes the reverse cholesterol transport from macrophages by increasing plasma efflux potential. J. Lipid Res. 49, 954-960. https://doi.org/10.1194/jlr.M700254-JLR200
  43. Zhang, G.H., Lu, J.X., Chen, Y., Zhao, Y.Q., Guo, P.H., Yang, J.T., and Zang, R.X. (2014). Comparison of the adipogenesis in intramuscular and subcutaneous adipocytes from bamei and landrace pigs. Biochem. Cell Biol. 92, 259-267. https://doi.org/10.1139/bcb-2014-0019
  44. Zhang, G.H., Lu, J.X., Chen, Y., Guo, P.H., Qiao, Z.L., Feng, R.F., Chen, S.E., Bai, J.L., Huo, S.D., and Ma, Z.R. (2015). Chrebp and lxralpha mediate synergistically lipogenesis induced by glucose in porcine adipocytes. Gene 565, 30-38. https://doi.org/10.1016/j.gene.2015.03.057

Cited by

  1. The Crosstalk between Fat Homeostasis and Liver Regional Immunity in NAFLD vol.2019, pp.2314-7156, 2019, https://doi.org/10.1155/2019/3954890
  2. The mTORC1/4EBP1/PPARγ Axis Mediates Insulin-Induced Lipogenesis by Regulating Lipogenic Gene Expression in Bovine Mammary Epithelial Cells vol.67, pp.21, 2019, https://doi.org/10.1021/acs.jafc.9b01411
  3. Impact of High-Sucrose Diet on the mRNA Levels for Elongases and Desaturases and Estimated Protein Activity in Rat Adipose Tissue vol.86, pp.5, 2021, https://doi.org/10.1134/s0006297921050011
  4. MiR-370 enhances cell cycle and represses lipid accumulation in porcine adipocytes vol.32, pp.3, 2021, https://doi.org/10.1080/10495398.2019.1697278