DOI QR코드

DOI QR Code

Structural and Biochemical Studies Reveal a Putative FtsZ Recognition Site on the Z-ring Stabilizer ZapD

  • Choi, Hwajung (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Min, Kyungjin (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Mikami, Bunzo (Laboratory of Quality Design and Exploitation, Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University) ;
  • Yoon, Hye-Jin (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Lee, Hyung Ho (Department of Chemistry, College of Natural Sciences, Seoul National University)
  • Received : 2016.08.31
  • Accepted : 2016.10.26
  • Published : 2016.11.30

Abstract

FtsZ, a tubulin homologue, is an essential protein of the Z-ring assembly in bacterial cell division. It consists of two domains, the N-terminal and C-terminal core domains, and has a conserved C-terminal tail region. Lateral interactions between FtsZ protofilaments and several Z-ring associated proteins (Zaps) are necessary for modulating Z-ring formation. ZapD, one of the positive regulators of Z-ring assembly, directly binds to the C-terminal tail of FtsZ and promotes stable Z-ring formation during cytokinesis. To gain structural and functional insights into how ZapD interacts with the C-terminal tail of FtsZ, we solved two crystal structures of ZapD proteins from Salmonella typhimurium (StZapD) and Escherichia coli (EcZapD) at a 2.6 and $3.1{\AA}$ resolution, respectively. Several conserved residues are clustered on the concave sides of the StZapD and EcZapD dimers, the suggested FtsZ binding site. Modeled structures of EcZapD-EcFtsZ and subsequent binding studies using bio-layer interferometry also identified the EcFtsZ binding site on EcZapD. The structural insights and the results of bio-layer interferometry assays suggest that the two FtsZ binding sites of ZapD dimer might be responsible for the binding of ZapD dimer to two protofilaments to hold them together.

Keywords

References

  1. Adams, D.W., and Errington, J. (2009). Bacterial cell division:assembly, maintenance and disassembly of the Z ring. Nat. Rev. Microbiol. 7, 642-653. https://doi.org/10.1038/nrmicro2198
  2. Brunger, A.T. (1992). Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472-475. https://doi.org/10.1038/355472a0
  3. de Boer, P., Crossley, R., and Rothfield, L. (1992). The essential bacterial cell-division protein FtsZ is a GTPase. Nature 359, 254-256. https://doi.org/10.1038/359254a0
  4. Diederichs, K., and Karplus, P.A. (1997). Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat. Struct. Biol. 4, 269-275. https://doi.org/10.1038/nsb0497-269
  5. Diederichs, K., and Karplus, P.A. (2013). Better models by discarding data? Acta Crystallogr. D Biol. Crystallogr. 69, 1215-1222. https://doi.org/10.1107/S0907444913001121
  6. Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., and Liang, J. (2006). CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34, W116-118. https://doi.org/10.1093/nar/gkl282
  7. Durand-Heredia, J., Rivkin, E., Fan, G., Morales, J., and Janakiraman, A. (2012). Identification of ZapD as a cell division factor that promotes the assembly of FtsZ in Escherichia coli. J. Bacteriol. 194, 3189-3198. https://doi.org/10.1128/JB.00176-12
  8. Ebersbach, G., Galli, E., Moller-Jensen, J., Lowe, J., and Gerdes, K. (2008). Novel coiled-coil cell division factor ZapB stimulates Z ring assembly and cell division. Mol. Microbiol. 68, 720-735. https://doi.org/10.1111/j.1365-2958.2008.06190.x
  9. Egan, A.J., and Vollmer, W. (2013). The physiology of bacterial cell division. Ann. N Y Acad. Sci. 1277, 8-28. https://doi.org/10.1111/j.1749-6632.2012.06818.x
  10. Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126-2132. https://doi.org/10.1107/S0907444904019158
  11. Erickson, H.P. (2009). Modeling the physics of FtsZ assembly and force generation. Proc. Natl. Acad. Sci. USA 106, 9238-9243. https://doi.org/10.1073/pnas.0902258106
  12. Galli, E., and Gerdes, K. (2012). FtsZ-ZapA-ZapB interactome of Escherichia coli. J. Bacteriol. 194, 292-302. https://doi.org/10.1128/JB.05821-11
  13. Hale, C.A., and de Boer, P.A. (1997). Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli. Cell 88, 175-185. https://doi.org/10.1016/S0092-8674(00)81838-3
  14. Holm, L., and Rosenstrom, P. (2010). Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545-549. https://doi.org/10.1093/nar/gkq366
  15. Huang, K.H., Durand-Heredia, J., and Janakiraman, A. (2013). FtsZ ring stability: of bundles, tubules, crosslinks, and curves. J. Bacteriol. 195, 1859-1868. https://doi.org/10.1128/JB.02157-12
  16. Huang, K.H., Mychack, A., Tchorzewski, L., and Janakiraman, A. (2016). Characterization of the FtsZ C-Terminal Variable (CTV). region in Z-Ring assembly and interaction with the Z-Ring stabilizer ZapD in E.coli cytokinesis. PLoS One 11, e0153337. https://doi.org/10.1371/journal.pone.0153337
  17. Krissinel, E., and Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774-797. https://doi.org/10.1016/j.jmb.2007.05.022
  18. London, N., Raveh, B., Cohen, E., Fathi, G. and Schueler-Furman, O. (2011). Rosetta FlexPepDock web server--high resolution modeling of peptide-protein interactions. Nucleic Acids Res. 39, W249-253. https://doi.org/10.1093/nar/gkr431
  19. Low, H.H., Moncrieffe, M.C., and Lowe, J. (2004). The crystal structure of ZapA and its modulation of FtsZ polymerisation. J. Mol. Biol. 341, 839-852. https://doi.org/10.1016/j.jmb.2004.05.031
  20. Lowe, J., and van den Ent, F. (2001). Conserved sequence motif at the C-terminus of the bacterial cell-division protein FtsA. Biochimie 83, 117-120. https://doi.org/10.1016/S0300-9084(00)01210-4
  21. Ma, X., Sun, Q., Wang, R., Singh, G., Jonietz, E.L., and Margolin, W. (1997). Interactions between heterologous FtsA and FtsZ proteins at the FtsZ ring. J. Bacteriol. 179, 6788-6797. https://doi.org/10.1128/jb.179.21.6788-6797.1997
  22. Margolin, W. (2000). Themes and variations in prokaryotic cell division. FEMS Microbiol. Rev. 24, 531-548. https://doi.org/10.1111/j.1574-6976.2000.tb00554.x
  23. McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J. Appl. Crystallogr. 40, 658-674. https://doi.org/10.1107/S0021889807021206
  24. Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240-255. https://doi.org/10.1107/S0907444996012255
  25. Ortiz, C., Kureisaite-Ciziene, D., Schmitz, F., McLaughlin, S.H., Vicente, M., and Lowe, J. (2015). Crystal structure of the Z-ring associated cell division protein ZapC from Escherichia coli. FEBS Lett. 589, 3822-3828. https://doi.org/10.1016/j.febslet.2015.11.030
  26. Osawa, M., Anderson, D.E., and Erickson, H.P. (2009). Curved FtsZ protofilaments generate bending forces on liposome membranes. EMBO J. 28, 3476-3484. https://doi.org/10.1038/emboj.2009.277
  27. Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Macromol. Crystallogr. Part A 276, 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
  28. Pichoff, S., and Lutkenhaus, J. (2002). Unique and overlapping roles for ZipA and FtsA in septal ring assembly in Escherichia coli. EMBO J. 21, 685-693. https://doi.org/10.1093/emboj/21.4.685
  29. Roach, E.J., Wroblewski, C., Seidel, L., Berezuk, A.M., Brewer, D., Kimber, M.S., and Khursigara, C.M. (2016). Structure and mutational analyses of Escherichia coli ZapD reveal charged residues involved in FtsZ filament bundling. J. Bacteriol. 198, 1683-1693. https://doi.org/10.1128/JB.00969-15
  30. Schumacher, M.A., Zeng, W., Huang, K.H., Tchorzewski, L., and Janakiraman, A. (2016). Structural and functional analyses reveal insights into the molecular properties of the Escherichia coli Z ring stabilizing protein, ZapC. J. Biol. Chem. 291, 2485-2498. https://doi.org/10.1074/jbc.M115.697037
  31. Sheffield, P., Garrard, S., and Derewenda, Z. (1999). Overcoming expression and purification problems of RhoGDI using a family of "parallel" expression vectors. Protein Exp. Purif. 15, 34-39. https://doi.org/10.1006/prep.1998.1003
  32. Son, S.H., and Lee, H.H. (2013). The N-terminal domain of EzrA binds to the C terminus of FtsZ to inhibit Staphylococcus aureus FtsZ polymerization. Biochem. Biophys. Res. Commun. 433, 108-114. https://doi.org/10.1016/j.bbrc.2013.02.055
  33. Son, S.H., and Lee, H.H. (2015). Crystallization and preliminary Xray crystallographic analysis of Z-ring-associated protein (ZapD). from Escherichia coli. Acta Crystallogr. F Struct. Biol. Commun. 71, 194-198. https://doi.org/10.1107/S2053230X15000266
  34. Sureshan, V., Deshpande, C.N., Boucher, Y., Koenig, J.E., Stokes, H.W., Harrop, S.J., Curmi, P.M., and Mabbutt, B.C. (2013). Integron gene cassettes: a repository of novel protein folds with distinct interaction sites. PLoS One 8, e52934. https://doi.org/10.1371/journal.pone.0052934
  35. Weiss, M.S. (2001). Global indicators of X-ray data quality. J. Appl. Cryst. 34, 130-135. https://doi.org/10.1107/S0021889800018227

Cited by

  1. Structure of the Z Ring-associated Protein, ZapD, Bound to the C-terminal Domain of the Tubulin-like Protein, FtsZ, Suggests Mechanism of Z Ring Stabilization through FtsZ Cross-linking vol.292, pp.9, 2017, https://doi.org/10.1074/jbc.M116.773192
  2. Structural Basis for Recognition of L-lysine, L-ornithine, and L-2,4-diamino Butyric Acid by Lysine Cyclodeaminase vol.41, pp.4, 2016, https://doi.org/10.14348/molcells.2018.2313
  3. Regulation of cytokinesis: FtsZ and its accessory proteins vol.66, pp.1, 2016, https://doi.org/10.1007/s00294-019-01005-6
  4. Molecular interactions and their predictive roles in cell pole determination in bacteria vol.47, pp.2, 2021, https://doi.org/10.1080/1040841x.2020.1857686