• Title/Summary/Keyword: CeO$_2$ coating

Search Result 57, Processing Time 0.023 seconds

Improved White Light Emitting Diode Characteristics by Coating GdAG:Ce Phosphor

  • Joshi, Charusheela;Yadav, Pooja;Moharil, S.V.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.69-72
    • /
    • 2014
  • White LEDs, based on blue LED chips coated with a yellow emitting phosphor (YAG:Ce), have several disadvantages. In this paper, we report the improvement in CRI [Color Rendition Index] using $GdAl_5O_{12}:Ce$ (GdAG:Ce) and related phosphors for blue LEDs. A modified combustion synthesis route using mixed fuel was used for synthesis route. By using this procedure, we formed the desired compounds in a single step. LEDs were then fabricated by coating the blue LED chips (CREE 470 nm, 300 micron) with the GdAG:Ce phosphor dispersed in epoxy resin. The CRI typically between 65~70 for the YAG:Ce based LED was improved to 87 for LEDs fabricated from the Gd(Al,Ga)G phosphors.

Cathodic Polarization of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ on $Ce_{0.8}Gd_{0.2}O_{1.9}$ Electrolyte ($Ce_{0.8}Gd_{0.2}O_{1.9}$ 전해질에서 $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ 양극의 과전압특성)

  • 윤희성;노의범;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.981-987
    • /
    • 1998
  • $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ as air electrode for soild oxide fuel cell was synthesized by a citrate process and its cathodic polarization was determinated by the current interruption method on the Gd-doped ceria as electrolyte. The addition of citric acid increased the exothermic heat for the formation of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ perovskite oxide. The degree of the initial particle agglomeration was affected by the exothermic heat. Also the increase of cal-cination temperature enlarged the particle size and the higher sintering temperature accelerated the den-sification of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ layer after its being painted on $Ce_{0.8}Gd_{0.2}O_{1.9}$ electrolyte. In this study $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ synthesized by citrate process of which the molar ratio of citric acid to metal nitrate was 2 calcined at $650^{\circ}C$ for 2hr and sintered at 1100 at $1200^{\circ}C$ for 4 hrs after slurry coating on Ce0.8Gd0.2O1.9 electrlyte showed the lowest cathodic polarization.

  • PDF

The Electric Properties of Surface Coating with CePO4 and M3(PO4)2 (M=Mg, Zn) on Li4Ti5O12 for Energy Storage Capacitor

  • Lee, Jong-Kyu;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.413-417
    • /
    • 2018
  • The $Li_4Ti_5O_{12}$ of anode material for the hybrid capacitor was coated using $CePO_4$, $M_3(PO_4)_2$ (M=Mg, Zn). The capacitance of phosphate coated $Li_4Ti_5O_{12}$ was found to be lower than that of $Li_4Ti_5O_{12}$, whereas the equivalent series resistance was higher than that of $Li_4Ti_5O_{12}$. With an increase in cycle number, the base of cylindrical cell exhibited swelling due to gas generated from the reaction between $Li_4Ti_5O_{12}$ and electrolyte. The swelling cycle number of phosphate coated $Li_4Ti_5O_{12}$ was higher than that of $Li_4Ti_5O_{12}$ due to improvement in electrochemical stability. Based on the results, it is proposed that phosphate coating can be employed as a barrier layer to control the gassing reaction by isolating the $Li_4Ti_5O_{12}$ particle from electrolyte solution.

Mechanical Properties of Zirconia-Based Ceramic Materials for Thermal Barrier Coating (열차폐 코팅을 위한 지르코니아계 세라믹 소재의 기계적 특성)

  • Jung, Kyu-Ick;Kim, Tae-Woo;Paik, Ungyu;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.498-503
    • /
    • 2006
  • A gas turbine blade with thermal barrier ceramic coating is operated at high temperature to increase engine efficiency. Recently, thermal barrier characteristics have been improved by advanced coating technology through microstructure control and increase of adhesion force of the coating layer. More advanced coating materials, rare earth zircon ate ceramics have been studied for replacing YSZ coatings as thermal barrier coatings. In this study, $La_2O_3,\;HfO_2,\;CeO_2,\;Gd_2O_3$ and pure or yttria stabilized zirconia were prepared. Microstructure analysis and the evaluation of mechanical properties such as Hertzian indentation and hardness test were performed.

Effect of Co-catalyst CeO2 on NOx Reduction in PtNi/W-TiO2 Catalysts for Low-temperature H2-SCR (저온 H2-SCR용 PtNi/W-TiO2 촉매에 조촉매 CeO2가 NOx 저감에 미치는 영향)

  • Jungsoo Kim;Younghee Kim
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.313-320
    • /
    • 2023
  • In order to increase the usability of H2-SCR, the NOx removal characteristics with catalyst powder of PtNi/CeO2-W-TiO2 using Ce as a co-catalyst was synthesized and coated on a porous metal structure (PMS) were evaluated. Catalyst powder of PtNi/CeO2-W-TiO2(PtNi nanoparticles onto W-TiO2, with the incorporation of ceria (CeO2) as a co-catalysts) was synthesized and coated onto a porous metal structure (PMS) to produce a Selective Catalytic Reduction (SCR) catalyst. H2-SCR with CeO2 as a co-catalyst exhibited higher NOx removal efficiency compared to H2-SCR without CeO2. Particularly, at a 10wt% CeO2 loading ratio, the NOx removal efficiency was highest at 90℃. As the amount of catalyst coating on PMS increased, the NOx removal efficiency was improved below 90℃, but it was decreased above 120℃. When the space velocity was changed from 4,000 h-1 to 20,000 h-1, the NOx removal efficiency improved at temperatures above 120℃. It was expected that the use of the catalyst could be reduced by applying the PMS with excellent specific surface area as a support.

Fabrication of oxide buffer layers for coated conductors (MOD 공정에 의한 산화물 완충층 제조)

  • Km Young-Kuk;Yoo Jai-Moo;Ko Jae-Woong;Chung Kuk-Chae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.3
    • /
    • pp.37-40
    • /
    • 2006
  • Oxide buffer layers for YBCO coated conductors were fabricated using MOD processing and development of microstructure and texture were investigated. A $CeO_2$ buffer layers were formed on RABiTS tape. Acetate-based precursor solution was employed to synthesize the precursor solution. Subsequently, the precursor solution was stabilized and modified with triethanolamine. $CeO_2$ precursor gel film was coated and annealed in $Ar/H_2$ atmosphere at high temperature. An annealed $CeO_2$ film shows mixed orientation with high (001) texturing. It was shown that (111) texture of $CeO_2$ layers were enhanced by multiple coating. This degradation was attributed to development of microcracks in the multiply coated $CeO_2$ films. Also discussed are the synthesis and the characterization of $La_2Zr_2O_7$ (LZO) buffer layers on RABiTS tape. A biaxially textured LZO buffer layer was fabricated with MOD processing method using metal alkoxide based precursor solution. It was shown that the LZO film were epitaxially grown on RABiTS tape and crack-free & uniform surface was obtained after annealing in $Ar/H_2$ atmosphere.

MOD-processed YBCO coated conductors on the $CeO_2$-buffered IBAD-MgO template

  • Shin, G.M.;Ko, R.K.;Oh, S.S.;Moon, S.H.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.4
    • /
    • pp.20-24
    • /
    • 2009
  • YBCO coated conductors (CC) on the $CeO_2$-buffered IBAD-MgO template were fabricated by metal-organic deposition (MOD) Process with Ba-trifluoroacetate and fluorine-free Y and Cu precursor materials. The precursor solution was coated on $CeO_2$-buffered IBAD MgO templates using the multiple dip-coating method, decomposed into inorganic precursors by pyrolysis up to $400^{\circ}C$ within 3 h, and finally fired at $740{\sim}800^{\circ}C$ in a reduced oxygen atmosphere. Microstructure, texture, and superconducting properties of YBCO films were found highly sensitive to both the firing temperature and time. The high critical current density ($J_C$) of $1.15\;MA/cm^2$ at 77.3K in the self-field could be obtained from $1\;{\mu}m$ thick YBCO CC, fired at $740^{\circ}C$ for 3.5 h, implying that high performance YBCO CC is producible on IBAD MgO template. Further enhancement of $J_C$ values is expected by improving the in-plane texture of $CeO_2$-buffer layer and avoiding the metal substrate contamination.

Preparation and Characterization of $Pd/CeO_2/Ta/Si$ model catalysts

  • 김도희;우성일
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.145-145
    • /
    • 2000
  • M-CeO2 (M : noble metal) catalysts have been widely studied as three-way catalysts and methanol synthesis catalysts. Ceria is thought to play a number of roles in these catalysts. The Ce(IV)/Ce(III) redox pair may store/release gases under oxidizing/reducing conditions, extending the operational window. Additionally, metal-ceria interactions lead to several effects, including the dispersion of the active components and promoting the activation of molecules such as CO or NO. Pd is a promising component to current TWC formulations and behaves particularly well when compared with Pt and Rh-based catalysts for low-temperature oxidation of Co and hydrocarbon. However the effect of Pd-ceria interactions on the physicochemical properties of Pd and the redox properties of Ce is not elucidated yet. In order to know exactly about the metal-ceria interactions, the model study are expecting to give a better environment, resulting in the wide use of the surface science tools. The substrate was Si(100) wafer, on which Ta metal was sputtered as a thickness of 100nm. The CeO2 thin film of 30nm was deposited by using the magnetron sputtering. Spin coating and magnetron sputtering methods were used to make the Pd thin film layer. The prepared sample was investigated by in-situ XPS, AES, SEM and AFM analysis.

  • PDF

Ce0.8Sm0.2O2 Sol-gel Modification on La0.8Sr0.2Mn0.8Cu0.2O3 Cathode for Intermediate Temperature Solid Oxide Fuel Cell

  • Lee, Seung Jin;Kang, Choon-Hyoung;Chung, Chang-Bock;Yun, Jeong Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.77-82
    • /
    • 2015
  • To increase the performance of solid oxide fuel cell operating at intermediate temperature ($600^{\circ}C{\sim}800^{\circ}C$), $Sm_{0.2}Ce_{0.8}O_2$ (SDC) thin layer was applied to the $La_{0.8}Sr_{0.2}Mn_{0.8}Cu_{0.2}O_3$ (LSMCu) cathode by sol-gel coating method. The SDC was employed as a diffusion barrier layer on the yttria-stabilized zirconia(YSZ) to prevent the interlayer by-product formation of $SrZrO_3$ or $La_2Zr_2O_7$. The by-products were hardly formed at the electrolyte-cathode interlayer resulting to reduce the cathode polarization resistance. Moreover, SDC thin film was coated on the cathode pore wall surface to extend the triple phase boundary (TPB) area.