DOI QR코드

DOI QR Code

Ce0.8Sm0.2O2 Sol-gel Modification on La0.8Sr0.2Mn0.8Cu0.2O3 Cathode for Intermediate Temperature Solid Oxide Fuel Cell

  • Lee, Seung Jin (School of Applied Chemical Engineering, Chonnam National University) ;
  • Kang, Choon-Hyoung (School of Applied Chemical Engineering, Chonnam National University) ;
  • Chung, Chang-Bock (School of Applied Chemical Engineering, Chonnam National University) ;
  • Yun, Jeong Woo (School of Applied Chemical Engineering, Chonnam National University)
  • Received : 2015.12.10
  • Accepted : 2015.12.29
  • Published : 2015.12.30

Abstract

To increase the performance of solid oxide fuel cell operating at intermediate temperature ($600^{\circ}C{\sim}800^{\circ}C$), $Sm_{0.2}Ce_{0.8}O_2$ (SDC) thin layer was applied to the $La_{0.8}Sr_{0.2}Mn_{0.8}Cu_{0.2}O_3$ (LSMCu) cathode by sol-gel coating method. The SDC was employed as a diffusion barrier layer on the yttria-stabilized zirconia(YSZ) to prevent the interlayer by-product formation of $SrZrO_3$ or $La_2Zr_2O_7$. The by-products were hardly formed at the electrolyte-cathode interlayer resulting to reduce the cathode polarization resistance. Moreover, SDC thin film was coated on the cathode pore wall surface to extend the triple phase boundary (TPB) area.

Keywords

References

  1. B. C. H. Steele and A. Heinzel, "Materials for fuel-cell technologies", Nature, 414(15), 345 (2001). https://doi.org/10.1038/35104620
  2. R. M. Ormerod, "Solid oxide fuel cells", Chem. Soc. Rev., 32, 17 (2006).
  3. J. Nielsen and J. Hjelm, "Impedance of SOFC electrodes : A review and a comprehensive case study on the impedance of LSM:YSZ cathodes", Electrochim. Acta., 115, 31 (2014). https://doi.org/10.1016/j.electacta.2013.10.053
  4. J. Nielsen, T. Jacobsen and M. Wandel "Impedance of porous IT-SOFC LSCF:CGO composite cathodes", Electrochim. Acta., 56(23), 7963 (2011). https://doi.org/10.1016/j.electacta.2011.05.042
  5. J. Patakangas, Y. Ma, Y. Jing and P. Lund, "Review and analysis of characterization methods and ionic conductivities for low-temperature solid oxide fuel cells (LT-SOFC)", J. Power Sources, 263, 315 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.008
  6. S. Yi and Y. Joo, "The Improvement of Electrical Characteristics of Inkjet-printed Cu films with Stress Relation during Thermal Treatment", J. Microelectron. Packag. Soc., 21(4), 57 (2014). https://doi.org/10.6117/kmeps.2014.21.4.057
  7. D. Kwak, "High Efficiency Power Conversion System of Non Isolated Type Applied in Fuel Cell Generator Used to Fire Prevention Installation", J. Microelectron. Packag. Soc., 13(3), 19 (2006).
  8. K. Hansen and K. V. Hansen, "A-site deficient $(La_{0.6}Sr_{0.4})_{1-s}-Fe_{0.8}Co_{0.2}O_{3-{\delta}}$ perovskites as SOFC cathodes" Solid State Ionics, 178, 1379 (2007). https://doi.org/10.1016/j.ssi.2007.07.012
  9. S. D. Souza, S. J. Visco, L. C. D. Jonghe, "Thin-film solid oxide fuel cell with high performance at low temperature", Solid State Ionics, 98, 57 (1997). https://doi.org/10.1016/S0167-2738(96)00525-5
  10. J. W. Stevenson, T. R. Armstrong, R. D. Carneim, L. R. Pederson and W. J. Weber, "Electrochemical Properties of Mixed Conducting Perovskites $La_{1-x}M_xCo_{1-y}Fe_yO_{3-{\delta}}$ (M = Sr, Ba, Ca)", Electrochem. Soc., 143, 2722 (1996). https://doi.org/10.1149/1.1837098
  11. Y. Takeda, R. Kanno, M. Noda, Y. Tomida and O. Yamamoto, "Cathodic Polarization Phenomena of Perovskite Oxide Electrodes with Stabilized Zirconia", J. Electrochem. Soc., 134, 2656 (1987). https://doi.org/10.1149/1.2100267
  12. S. Sekido, "Electric-ionic conductivity in perovskite-type oxides, $Sr_xLa_{1-x}Co_{1-y}Fe_yO_{3-{\delta}}$", Solid State Ionics, 37, 253 (1990). https://doi.org/10.1016/0167-2738(90)90184-S
  13. V. A. C. Haanappel, A. Mai, and J. Mertens, "Electrode activation of anode-supported SOFCs with LSM- or LSCF-type cathodes", Solid State Ionics, 177, 2033 (2006). https://doi.org/10.1016/j.ssi.2005.12.038
  14. N. Q. Minh, "Ceramic fuel-cells", J. Am. Ceram. Soc., 76, 563 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  15. D. Y. Wang, D. S. Park, J. Griffith, and A. S. Nowick, "Oxygenion conductivity and defect interactions in yttria-doped ceria", Solid State Ionics, 2, 95 (1981). https://doi.org/10.1016/0167-2738(81)90005-9
  16. H. L. Tuller and A. S. Nowick, "Doped ceria as a solid oxide electrolyte", J. Electrochem. Soc., 122, 255 (1975). https://doi.org/10.1149/1.2134190
  17. D. Y. Wang and A. S. Nowick, "The grain-boundary effect in doped ceria solid electrolyte", J. Solid State Chem., 35, 325 (1980). https://doi.org/10.1016/0022-4596(80)90529-0
  18. H. Yahiro, Y. Eguchi, K. Eguchi and H. Arai, "Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure", J. Appl. Electrochem., 18, 527 (1988). https://doi.org/10.1007/BF01022246
  19. J. W. Yun, S. P. Yoon, S. Park, J. Han, S.W. Nam, T. H. Lim and J. S. Kim, "Modifying the cathodes of intermediate-temperature solid oxide fuel cells with a $Ce_{0.8}Sm_{0.2}O_2$ sol-gel coating", Int. J. Hydrogen Energy, 34, 9213 (2009). https://doi.org/10.1016/j.ijhydene.2009.08.091
  20. J. W. Yun, J. Han, S. P. Yoon, S. Park, H. S. Kim, and S. W. Nam, "$Ce_{0.8}Gd_{0.2}O_2$ modification on $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ cathode for improving a cell performance in intermediate temperature solid oxide fuel cells", J. Ind. Eng. Chem., 17, 439 (2011). https://doi.org/10.1016/j.jiec.2010.10.016

Cited by

  1. Characteristics of Cr(III)-based Conversion Coating Solution to Apply Aluminum Alloys for Improving Anti-corrosion Properties vol.23, pp.4, 2016, https://doi.org/10.6117/kmeps.2016.23.4.079
  2. Effects of zinc nitrate as a sintering aid on the electrochemical characteristics of Sr 0.92 Y 0.08 TiO 3–δ and Sr 0.92 Y 0.08 Ti 0.6 Fe 0.4 O 3–δ anodes vol.44, pp.4, 2018, https://doi.org/10.1016/j.ceramint.2017.12.007