• 제목/요약/키워드: Cavity temperature

검색결과 605건 처리시간 0.027초

선박 슬러지유 환경에서의 초음파 진동자 선단의 침식손상(2) - 침지깊이 변화에 따른 고찰 - (Erosion Damage of Ultrasonic Vibrator Tip in Marine Sludge Oil Environment - study on depth of transducer disc -)

  • 한원희;하만식;이진열
    • 해양환경안전학회지
    • /
    • 제7권3호
    • /
    • pp.75-84
    • /
    • 2001
  • Ultrasonic vibrator is an equipment which atomizes and homogenizes the oils by breaking the oil particles with ultrasonic vibration cavity, and possibly improves the properties. There are various parameters on the effect of ultrasonic irradiation. Especially, this study intended to investigate the matrix structure of sludge oils and the erosion damages for horn disc SS41 according to the variation of the oil temperature and the immersing depth of horn disc. Sludge oils were irradiated with ultrasonic vibration and then observed the aspects of the change of oil particles. From these, the recycling feasibility of sludge oil for useable oil to be burnt was determined. The erosion damages for horn disc SS41 were examined with weight loss, weight loss rate and the irradiation time to max. erosion rate. These data will be useful to the development of ultrasonic breaking systems to recycle sludge oil and to consider a countermeasure for the prevention of erosion damages.

  • PDF

Microstructural Evolution during High-Temperature Deformation of Coarse-Grained BaTiO3

  • Park, Eun-Tae
    • The Korean Journal of Ceramics
    • /
    • 제5권2호
    • /
    • pp.99-103
    • /
    • 1999
  • Compressive creep of dense polycrystalline $BaTiO_3$, with average grain sizes of 19.3-52.4$\mu\textrm{m}$, has been investigated at 1100-$1300^{\circ}C$ in air or under controlled atmospheres $(10^2-10^5Pa \;O_2)$. Some cavity growth occurred during deformation because of non-steady-state damage accumulation in the form of cavitation. Comparison of the creep data of polycrystalline BaTiO3 with existing diffusivity and creep data for perovskite oxides suggested that deformation of polycrystalline $BaTiO_3$ was controlled by the extrinsic lattice diffusion of barium or titanium.

  • PDF

설압력 측정품구에 관한 연구 (A STUDY OF ELECTRONIC DEVICE FOR THE MEASURING THE TONGUE PRESSURE)

  • 이호용;김기환;정경훈
    • 대한치과의사협회지
    • /
    • 제15권12호
    • /
    • pp.1027-1030
    • /
    • 1977
  • It has been widely believed that the exact measurement of the forces exerted on teeth and its structures by the lingual and perioral musculatures such as lip, cheek and tongue is important and significant in dentistry. Such measuring, moreover, is highly emphasized the importance of the fact that it can be of much help to study the physiological function displayed in the oral cavity. Recognizing the importance of measuring the pressures, the author has devised an electronic device consisting of pressure transducers utilizing reistance-strnain gauges. This electronic strain gauge was very easy to manipulate and its scale error was extremely minimized, unaffected by mouth temperature, mosture and external forces Author was able to read its results with attached meter without using calibration chart. Futhermore, the sensitivity of this electronic device was extremely high, Thus it facilitated to measure a force from 0 to 230 grams.

  • PDF

PLS(Plasma Light System)의 내열방사 특성 연구 (Study on the heat-resistance characteristic for PLS(Plasma Light System))

  • 신상욱;이세현;조미령;임종민;황명근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.293-295
    • /
    • 2004
  • PLS(Plasma Light System) is one of the electrodeless lamp discharged by micro wave. In this new lamp has high efficacy and CRI(Color Rendering Index). It is mainly composed of microwave part and optical part. Microwave parts consist of magnetron, wave-guide and cavity-mesh, while optical parts consist of bulb, mirror and reflector. In this paper, we studied experimentally the heat-resistance and temperature distribution characteristics of bulb in PLS.

  • PDF

입계기공의 확산성장 모델을 이용한 고온기기의 크립균열전파해석(1)-응력장 및 균열전파속도에 미치는 입계기공의 영향- (Analysis of Creep Crack Growth at High-Temperature Components by Diffusive Growth Model of Grain Boundary Cavities (I)-Effect of Grain Boundary Cavitation on Stress Field and Crack Growth Rate-)

  • 전재영
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.1177-1185
    • /
    • 1996
  • The crack growth under creep condition is one of the major damage mechanisms which determines remaining life of the component operating at high temperatures. In this paper, the creep crack growth by grain boundary cavitation is studied, which is frequently observed failure mechanism for creep brittle materials. As a result of diffusive growth of creep cavities, it is shown that the crack-tip stress field is modified from the original stress distribution by the amount of singularity attenuation parameter which is function of crack growth rate and material properties. Also, the stress relaxation at crack-tip results in the extension of cavitating area by the load dump effect to meet the macroscopic force equilibrium conditdion.

천연가스 고체화수송을 위한 하이드레이트 구조 I과 II에 대한 비교실험 (A Comparative Experiment on the Hydrate Structures I and II for the Solid Transportation of Natural Gas)

  • 김남진;김종보
    • 설비공학논문집
    • /
    • 제15권8호
    • /
    • pp.674-682
    • /
    • 2003
  • Natural gas hydrate typically contains 85 wt.% water and 15 wt.% natural gas, and commonly belongs to cubic structure I and II. Also, 1m$^3$ hydrate of natural gas can be decomposed to 200 m$^3$ natural gas at standard condition. If this characteristic of hydrate is reversely utilized, natural gas is fixed into water and produced to hydrate. Therefore the hydrate is great as a means to transport and store natural gas. So, the tests were performed on the formation of natural gas hydrate is governed by the pressure, temperature, gas composition etc. The results show that the equilibrium pressure of structure II is approximately 65% lower and the solubility is about 3 times higher than structure I. Also if the subcoolings of structure I and structure II are more than 9 K and 11 K respectively, the hydrates are rapidly formed.

Thermal stress analysis around a cavity on a bimetal

  • Baytak, Tugba;Bulut, Osman
    • Structural Engineering and Mechanics
    • /
    • 제69권1호
    • /
    • pp.69-75
    • /
    • 2019
  • The plates made of two materials joined to each other having the different coefficient of thermal expansions are frequently encountered in the industrial applications. The stress analysis of these members under the effect of high-temperature variation has great importance in design. In this study, the stress analysis of the experimental model developed for the problem considered here was performed by the method of photothermoelasticity. The thermal strains were formed by the mechanical way and these were fixed by the strain freezing method. For the stress measurements, the method of slicing is applied which provides three-dimensional stress analysis. The analytical solution in the literature was compared with the related stress distribution obtained from the model. Moreover, the axisymmetric finite element model developed for the problem was solved by ABAQUS and the results obtained here compared with those of the experimental model and the analytical solution. As a result of this study, this experimental method and numerical model can be used for these type of thermal stress problems which have not been comprehensively analyzed yet.

Development of analysis program for direct containment heating

  • Jiang, Herui;Shen, Geyu;Meng, Zhaoming;Li, Wenzhe;Yan, Ruihao
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3130-3139
    • /
    • 2022
  • Direct containment heating (DCH) is one of the potential factors leading to early containment failure. DCH is closely related to safety analysis and containment performance evaluation of nuclear power plants. In this study, a DCH prediction program was developed to analyze the DCH loads of containment vessel. The phenomenological model of debris dispersal, metal oxidation reaction, debris-atmospheric heat transfer and hydrogen jet burn was established. Code assessment was performed by comparing with several separate effect tests and integral effect tests. The comparison between the predicted results and experimental data shows that the program can predict the key parameters such as peak pressure, temperature, and hydrogen production in containment well, and for most comparisons the relative errors can be maintained within 20%. Among them, the prediction uncertainty of hydrogen production is slightly larger. The analysis shows that the main sources of the error are the difference of time scale and the oxidation of cavity debris.

Lateral Far-field Characteristics of Narrow-width 850 nm High Power GaAs/AlGaAs Laser Diodes

  • Yang, Jung-Tack;Kwak, Jung-Geun;Choi, An-Sik;Kim, Tae-Kyung;Choi, Woo-Young
    • Current Optics and Photonics
    • /
    • 제6권2호
    • /
    • pp.191-195
    • /
    • 2022
  • We investigate the lateral far-field pattern characteristics, including divergence angle change and far-field pattern analysis as output power increases, of narrow-emitter-width 850 nm GaAs/AlGaAs laser diodes (LDs). Each LD has a cavity of 1200 and 1500 ㎛ and narrow emitter width of 2.4 ㎛ for the top and 4.6 ㎛ for the bottom. The threshold currents are 35 and 40 mA, and L-I kinks appear at power levels of 326 and 403 mW, respectively. The divergence angle tends to increase due to the occurrence of first-order lateral mode and the thermal lensing effect. But with the L-I kink, the divergence angle decreases and the far-field pattern becomes asymmetric. This is due to coherent superposition between the fundamental and the first-order lateral mode. We provide detailed explanations for these observations based on high-power laser diode simulation results.

MECHANISM OF KEYHOLE FORMATION AND STABILITY IN STATIONARY LASER WELDING

  • Lee, Jae Y.;Sung H. Ko;Choong D. Yoo
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.644-651
    • /
    • 2002
  • The formation and stability of stationary laser weld keyholes are investigated using a numerical simulation. The effect of multiple reflections in the keyhole is estimated using the ray tracing method, and the free surface profile, flow velocity and temperature distribution are calculated numerically. In the simulation, the keyhole is formed by the displacement of the melt induced by evaporation recoil pressure, while surface tension and hydrostatic pressure oppose cavity formation. At laser powers of 500W and greater, the protrusion occurs on the keyhole wall, which results in keyhole collapse and void formation at the bottom. Initiation of the protrusion is caused mainly by collision of upward and downward flows due to the pressure components.

  • PDF