DOI QR코드

DOI QR Code

Lateral Far-field Characteristics of Narrow-width 850 nm High Power GaAs/AlGaAs Laser Diodes

  • Received : 2021.09.23
  • Accepted : 2021.12.28
  • Published : 2022.04.25

Abstract

We investigate the lateral far-field pattern characteristics, including divergence angle change and far-field pattern analysis as output power increases, of narrow-emitter-width 850 nm GaAs/AlGaAs laser diodes (LDs). Each LD has a cavity of 1200 and 1500 ㎛ and narrow emitter width of 2.4 ㎛ for the top and 4.6 ㎛ for the bottom. The threshold currents are 35 and 40 mA, and L-I kinks appear at power levels of 326 and 403 mW, respectively. The divergence angle tends to increase due to the occurrence of first-order lateral mode and the thermal lensing effect. But with the L-I kink, the divergence angle decreases and the far-field pattern becomes asymmetric. This is due to coherent superposition between the fundamental and the first-order lateral mode. We provide detailed explanations for these observations based on high-power laser diode simulation results.

Keywords

Acknowledgement

Research Fund of High Efficiency Laser Laboratory of the Agency for Defense Development of Korea (NO. UD190015ID).

References

  1. L. Mei and M. Brydegaard, "Continuous-wave differential absorption lidar," Laser Photonics Rev. 9, 629-636 (2015). https://doi.org/10.1002/lpor.201400419
  2. X. Ai, R. Nock, J. G. Rarity, and N. Dahnoun, "High-resolution random-modulation cw lidar," Appl. Opt. 50, 4478-4488 (2011). https://doi.org/10.1364/AO.50.004478
  3. J. Yang, G. Zhou, X. Yu, and W. Zhu, "Design and implementation of power supply of high-power diode laser of LIDAR onboard UAV," in Proc. 2011 International Symposium on Image and Data Fusion (Tengchong, China, Aug. 9-11, 2011), pp. 1-4.
  4. E. Watanabe, N. Arima, and K. Kodate, "Facial recognition system with compact optical parallel correlator using vertical-cavity surface-emitting laser array module," Jpn. J. Appl. Phys. 43, 5890-5896 (2004). https://doi.org/10.1143/JJAP.43.5890
  5. J. Gwak, J. Park, J. Park, K. Baek, A. Choi, and T. Kim, "940-nm 350-mW transverse single-mode laser diode with AlGaAs/InGaAs GRIN-SCH and asymmetric structure," Curr. Opt. Photonics 3, 583-589 (2019). https://doi.org/10.3807/COPP.2019.3.6.583
  6. G. An, Y. Wang, J. Han, H. Cai, Z. Jiang, M. Gao, S. Wang, W. Zhang, H. Wang, L. Xue, and J. Zhou, "Deleterious processes of a diode-pumped cesium vapor hollow-core photonic-crystal fiber laser," High Power Laser Sci. Eng. 4, e37 (2016). https://doi.org/10.1017/hpl.2016.37
  7. D. A. VinoKurov, V. A. Kapitonov, A. V. Lyutetskiy, D. N. Nikolaev, N. A. Pikhtin, S. O. Slipchenko, A. L. Stankevich, V. V. Shamakhov, L. S. Vavilova, and I. S. Tarasov, "850-nm diode lasers based on AlGaAsP/GaAs heterostructures," Semiconductors 46, 1321-1325 (2012). https://doi.org/10.1134/S106378261210020X
  8. S. Banerjee, P. Mason, J. Phillips, J. Smith, T. Butcher, J. Spear, M. D. Vido, G. Quinn, D. Clarke, K. Ertel, C. Hernandez-Gomez, C. Edwards, and J. Collier, "Pushing the boundaries of diode-pumped solid-state lasers for high-energy applications," High Power Laser Sci. Eng. 8, e20 (2020). https://doi.org/10.1017/hpl.2020.20
  9. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004). https://doi.org/10.1364/OPEX.12.006088
  10. L. Zhong and X. Ma, "Recent developments in high power semiconductor diode lasers," in Optoelectronics: Devices and Applications, P. Predeep, Ed., (Intechopen, 2011), pp. 325-348.
  11. F. Daiminger, F. Dorsch, and D. Lorenzen, "High-power laser diodes, laser diode modules, and their applications," Proc. SPIE 3682, 13-23 (1998).
  12. A. V. Aluev, A. M. Morozyuk, M. S. Kobyakova, and A. A. Chel'nyi, "High-power 2.5-W cw AlGaAs/GaAs laser diodes," Quantum Electron. 31, 627-628 (2001). https://doi.org/10.1070/QE2001v031n07ABEH002016
  13. B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, "Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings," Opt. Lett. 29, 1891-1893 (2004). https://doi.org/10.1364/OL.29.001891
  14. H. Wenzel, F. Bugge, M. Dallmer, F. Dittmar, J. Fricke, K. H. Hasler, and G. Erbert, "Fundamental-lateral mode stabilized high-power ridge-waveguide lasers with a low beam divergence," IEEE Photonics Technol. Lett. 20, 214-216 (2008). https://doi.org/10.1109/LPT.2007.913328
  15. W. D. Herzog, B. B. Goldberg, and M. S. Unlu, "Beam steering in narrow-stripe high-power 980-nm laser diodes," IEEE Photonics Technol. Lett. 12, 1604-1606 (2000). https://doi.org/10.1109/68.896321
  16. L. Brovelli and C. S. Harder, "Laser device," European Patent EP1012933A1 (2000).
  17. J. Nappi, A. Ovtchinnikov, H. Asonen, P. Savolainen, and M. Pessa, "Limitations of two-dimensional passive waveguide model for λ=980 nm Al-free ridge waveguide lasers," Appl. Phys. Lett. 64, 2203-2205 (1994). https://doi.org/10.1063/1.111673
  18. J. Piprek, "Self-consistent far-field blooming analysis for high-power Fabry-Perot laser diodes," Proc. SPIE 8619, 861910 (2013).
  19. J. Piprek, "Self-consistent analysis of thermal far-field blooming of broad-area laser diodes," Opt. Quantum Electron. 45, 581-588 (2013). https://doi.org/10.1007/s11082-012-9640-6
  20. P. Crump, S. Boldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, "Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers," Semicond. Sci. Technol. 27, 045001 (2012). https://doi.org/10.1088/0268-1242/27/4/045001
  21. J. Yang, J. Kwak, A. Choi, T. Kim, and W. Choi, "Analysis of lateral-mode characteristics of 850-nm MQW GaAs/(AL,Ga) as laser diodes," Korean J. Opt. Photon. 30, 55-61 (2021).