DOI QR코드

DOI QR Code

Optical Characteristics of Corneal Nanostructure According to the Angle of Collagen-fiber-layer Arrangement

  • Received : 2021.09.12
  • Accepted : 2022.01.18
  • Published : 2022.04.25

Abstract

Collagen fibers tens of nanometers in size, which constitute most of the corneal volume of the human eye, are layered in a uniform direction, and adjacent fiber layers are arranged at an angle of 90° to each other. According to the results of this study, the transmittance at 45° of interlayer rotation angle is highest, and higher than that of the 90° body structure. The transmittance is examined, concerning the polarization state of the incident light; circularly polarized light case shows higher transmittance than linearly polarized. Through this, a simulation to confirm the deformed structure of collagen fibers, which show higher transmittance than the anatomical structure of the cornea, is attempted.

Keywords

Acknowledgement

This paper was supported by Eulji University in 2021.

References

  1. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, "Giant optical transmission of subwavelength aperture: physics and applications," Nanotechnology 13, 429-432 (2002). https://doi.org/10.1088/0957-4484/13/3/337
  2. W. L. Barnes, A. Dereux, and T. W. Ebbessen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). https://doi.org/10.1038/nature01937
  3. F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbessen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003). https://doi.org/10.1103/PhysRevLett.90.213901
  4. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbessen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003). https://doi.org/10.1103/PhysRevLett.90.167401
  5. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbessen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002). https://doi.org/10.1126/science.1071895
  6. Y. C. Kim, D. W. Kim, V. K. Jha, O. K. Suwal, and S. S. Choi, "The effect of groove on the light transmission through nanoapertures," Physica E: Low Dimens. Syst. Nanostruct. 43, 929-933 (2011). https://doi.org/10.1016/j.physe.2010.11.019
  7. K. M. Meek and C. Knupp, "Corneal structure and transparency," Prog. Retin. Eye Res. 49, 1-16 (2015). https://doi.org/10.1016/j.preteyeres.2015.07.001
  8. D. M. Maurice, "The structure and transparency of the cornea," J. Physiol. 136, 263-286 (1957). https://doi.org/10.1113/jphysiol.1957.sp005758
  9. T. J. Freegard, "The physical basis of transparency of the normal cornea," Eye 11, 465-471 (1997). https://doi.org/10.1038/eye.1997.127
  10. D. H. Kim, O. J. Kwon, S. M. Kim, J. M. Kim, C. S. Kim, Ocular physiology (Hyunmoon, Seoul, Korea, 2009), Vol. 4, pp.1-24.
  11. Y. Komai and T. Ushiki, "The three-dimensional organization of collagen fibril in the human cornea and sclera," Invest. Ophthalmol. Vis. Sci. 32, 2244-2258 (1991).
  12. I. S. Kim, J. S. Kim, and J. S. Jeon, "An ultrastructural changes of rat corneal epithelium and stromal layer in developmental process," Korean Soc. Microsc. 28, 491-502 (1998).
  13. E. A. Boettner and J. R. Wolter, "Transmission of the ocular media," Invest. Ophthalmol. Vis. Sci. 1, 776-783 (1962).
  14. M. H. Lee, S. K. Moon, and Y. C. Kim, "Effect of the corneal nano structure on light transmittance," Optik 144, 647-654 (2017). https://doi.org/10.1016/j.ijleo.2017.06.113