• Title/Summary/Keyword: Cavity sensor

Search Result 146, Processing Time 0.025 seconds

An investigation of pressure oscillation in supersonic cavity flow (초음속 Cavity 내에서의 압력 진동 특성 연구)

  • Kim Hyungjun;Kim Sehoon;Kwon Sejin;Park Kunhong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.743-746
    • /
    • 2002
  • Experimental investigation of the flow field of supersonic cavity is described. In this research, supersonic cavity is used in chemical laser system. For efficient laser, downstream flow after cavity need to be uniform and clear for pressure recovery system. In previous research, it's known that there's oscillation In cavity and is due to Mach number and L/D ratio. A strong recompression occurs at the after wall and the flow is visibly unsteady. Cavity flow in this research is of the open type, that is, length-to-depth ratio $L/D<10\;at\;M\;=\;3$. Experiment is done with pressure measurement by piezo-type sensor and visualization by Schlirern method. The time-dependent experimental result is compared with computation.

  • PDF

Forming Characteristics with Cavity Pressure and Temperature Signal Inside Mold in High-Pressure Resin Transfer Molding Process of Carbon Fiber Reinforced Composite Material (탄소섬유강화복합소재의 고압수지이송성형공정에서 금형 내 캐비티의 압력 및 온도신호에 따른 성형특성)

  • Han, Beom-Jeong;Jeong, Yong-Chai;Kim, Sung-Ryul;Kim, Ro-Won;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.81-86
    • /
    • 2017
  • The high-pressure resin transfer molding (HP-RTM) process has a very effective for the mass production of carbon fiber reinforced plastic (CFRP) for light weight in the automotive industry. In developing robust equipment, new process and fast cure matrix systems reduces significantly the cycle time less than 5 minutes in recent years. This paper describes the cavity pressure, temperature and molding characteristics of the HP-RTM process. The HP-RTM mold was equipped with two cavity pressure sensors and three temperature sensors. The cavity pressure characteristics of the HP-RTM injection, pressurization, and curing processes were studied. This experiment was conducted with selected process parameters such as mold cap size, maximum press force, and injection volume. Consequently, this monitoring method provides correlations between the selected process parameters and final forming characteristics in this work.

Temperature compensation method of piezoresistive pressure sensor using compensating bridge (보상용 브릿지를 이용한 압저항형 압력센서의 온도보상 방법)

  • 손원소;이재곤;최시영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.5
    • /
    • pp.63-68
    • /
    • 1998
  • The absolute pressure sensor using SDB wafer has been fabricated. the structure of the sensor consists of two wheatstone bridges and a diaphragm. One of the two wheatstone bridges is located on the edge of diaphragm, and the other is located on the center of diaphragm. The diaphragm cavity is sealted in vacuum (~10$^{5}$ Torr) to reduce the effect of temperature due to the vapor in the cavity on the sensitivity of pressure sensor. This is the minor method of temperature compensation method. In this experiment the main compensation method is to use the difference of the two bridge offset voltages. The drift of offset voltage with temperature is reduced by using this method so that temperature charcteristics is improved. In this method the temperature effect in the range of 22~100.deg. C was compensated over 80%.

  • PDF

Development of NDIR CO2 Gas Detector Using Thermopile Sensor (써모파일 센서를 이용한 NDIR CO2 가스검출기의 개발)

  • Cho, Si-Hyung;Park, Chan-Won
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.35-38
    • /
    • 2012
  • We present a novel non-dispersive infrared (NDIR) $CO_2$ gas sensor with a light source emitting collimated light. Using this thermopile, we also have successfully developed a small, sensitive NDIR $CO_2$ detector module for accurate air quality monitoring systems in energy-saving building and automotive applications. The novel sample cavity comprising specular reflectors around the light bulb is configured to uniformly emit collimated light into the entrance aperture of the cavity in order to enhance the sensitivity of NDIR $CO_2$ detector.

  • PDF

Design and Fabrication of Capacitive Pressure Sensor (용량형 압력센서의 설계 및 제작)

  • 이승준;김병태;권영수;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.561-564
    • /
    • 2000
  • Silicon capacitive pressure sensor has been fabricated by using electrochemical etching stop and silicon-to-glass electrostatic bonding technique. A diaphragm structure is designed to compensate the nonlinear response. A cavity is etched into the silicon to the depth of 2$\mu\textrm{m}$ by anisotropic etching in 20wt.% TMAH solution at 80$^{\circ}C$. A fabricated sensor showed 3.3 pF zero-pressure capacitance, 297 pp.m/mmHg sensitivity, and a 7.4 7%F.S. nonlinear response in a 0-1 kgf/cm$^2$pressure range.

  • PDF

Experiments for the Acoustic Source Localization in 2D Cavity Flow (2차원 공동 유동에서의 소음원 위치 판별을 위한 실험적 연구)

  • Lee, Jaehyung;Park, Kyu-Chol;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1241-1248
    • /
    • 2004
  • This paper presents an acoustic source localization technique on 2D cavity model in flow using a phased microphone array. Investigation was performed on cavity flows of open and closed types. The source distributions on 2D cavity flow were investigated in an anechoic open-jet wind tunnel. The array of microphones was placed outside the flow to measure the far field acoustic signals. The optimum sensor placement was decided by varying the relative location of the microphones to improve the spatial resolution. Pressure transducers were flush-mounted on the cavity surface to measure the near-filed pressures. It is shown that the propagated far field acoustic pressures are closely correlated to the near-field pressures and their spectral contents are affected by the cavity parameter L/D.

Acoustic Source Localization in 2D Cavity Flow using a Phased Microphone Array (마이크로폰 어레이를 이용한 2차원 공동 유동에 대한 소음원 규명)

  • 이재형;최종수;박규철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.701-708
    • /
    • 2003
  • This paper presents an acoustic source localization technique on 2D cavity model in flow using a phased microphone way. Investigation was performed on cavity flows of open and closed types. The source distributions on 2D cavity flow were investigated in anechoic open-jet wind tunnel. The array of microphones was placed outside the flow to measure the far field acoustic signals. The optimum sensor placement was decided by varying the relative location of the microphones to improve the spatial resolution. Pressure transducers were flush-mounted on the cavity surface to measure the near-filed pressures. It is shown that the propagated far field acoustic pressures are closely correlated to the near-field pressures. It is also shown that their spectral contents are affected by the cavity parameter L/D.

  • PDF

Infrared Light Absorbance: a New Method for Temperature Compensation in Nondispersive Infrared CO2 Gas Sensor

  • Yi, Seung Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.303-311
    • /
    • 2020
  • Nondispersive infrared CO2 gas sensor was developed after the simulation of optical cavity structure and assembling the optical components: IR source, concave reflectors, Fresnel lens, a hollow disk, and IR detectors. By placing a hollow disk in front of reference IR detector, the output voltages are almost constant value, near to 70.2 mV. The absorbance of IR light, Fa, shows the second order of polynomial according to ambient temperatures at 1,500 ppm. The differential output voltages and the absorbance of IR light give a higher accuracy in estimations of CO2 concentrations with less than ± 1.5 % errors. After implementing the parameters that are dependent upon the ambient temperatures in microcontroller unit (MCU), the measured CO2 concentrations show high accuracies (less than ± 1.0 %) from 281 K to 308 K and the time constant of developed sensor is about 58 sec at 301 K. Even though the estimation errors are relatively high at low concentration, the developed sensor is competitive to the commercial product with a high accuracy and the stability.

Influence of Environmental Conditions on the Sensitivity of a Mandrel Type Fiber Optic Acoustic Sensor (주위 환경이 맨드릴형 광-음향센서의 감도특성에 미치는 영향)

  • 임종인;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.8-12
    • /
    • 2000
  • This paper describes the sensitivity stability of a mandrel type fiber optic acoustic sensor with respect to its environmental conditions such as hydrostatic pressure and underwater temperature. The sensors under consideration have various mandrel structures such as a cylindrical mandrel, a concentric composite mandrel, and an air-backed concentric composite mandrel. The analysis results show that the sensors have such good robustness, less than 0.15dB, in its sensitivity with respect to the variation in hydrostatic pressure. Further, the nylon concentric composite mandrel type sensor including an air cavity turns out to have the most superior stability than others to the underwater temperature variations.

  • PDF

Theoretical Analysis and Optimization of Extrinsic Fabry-Perot Interferometer Optical-fiber Humidity-sensor Structures

  • Yin, Xiao Lei;Wang, Ning;Yu, Xiao Dan;Li, Yu Hao;Zhang, Bo;Li, Dai Lin
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.652-659
    • /
    • 2021
  • The theoretical analysis and optimization of extrinsic Fabry-Perot interferometer (EFPI) opticalfiber humidity sensors are deeply investigated. For a typical dual-cavity structure composed of an optical fiber and a humidity-sensitive membrane (HSM), the changes in refractive index (RI) and initial length are discussed for polymer materials and porous oxide materials when relative humidity (RH) increases. The typical interference spectrum is simulated at different RH using MATLAB. The spectral change caused by changing HSM RI and initial length are simulated simutineously, showing different influences on humidity response. To deeply investigate the influence on RH sensitivity, the typical response sensitivity curves for different HSM lengths and air-cavity lengths are simulated. The results show that the HSM is the vital factor. Short HSM length can improve the sensitivity, but for HSM RI and length the influences on sensitivity are opposite, because of the opposite spectral-shift trend. Deep discussion and an optimization method are provided to solve this problem. According to analysis, an opaque HSM is helpful to improve sensitivity. Furthermore, if using an opaque HSM, a short air cavity and long HSM length can improve the sensor's sensitivity These results provide deep understanding and some ideas for designing and optimizing highly sensitive EFPI fiber humidity sensors.