• Title/Summary/Keyword: Cavitation tests

Search Result 113, Processing Time 0.025 seconds

Prediction of the Propeller Face Cavity Inception and Experimental Verification (프로펠러 압력면 캐비테이션의 초기발생 추정 및 실험 검증)

  • Ahn, Byoung-Kwon;Lee, Chang-Sup;Yu, Yong-Wan;Moon, Il-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.467-473
    • /
    • 2007
  • Cavitation phenomena appearing on ship propellers have long been interested and recent theoretical analysises give good results comparing with model tests. In accordance with a continuous rise in heavy powered and high speed ships, hull forms have been changed and loads acting on the propeller surface have also been increased, and they result in various and particular cavitations. In some cases, cavitation appears not only on the back but also on the face of the propeller and it causes additive pressure fluctuations and erosion of the propeller and reduces propulsion efficiency of the ship. In this study, we predict the face cavity inception using unsteady propeller analysis based on the panel method and compare the results with experimental observations.

Comparative Study of Full-Scale Propeller Cavitation Test and LCT Model Test for MR Tanker (MR Tanker 실선 프로펠러 캐비테이션 시험 및 LCT 모형시험과 비교연구)

  • Ahn, Jong-Woo;Paik, Bu-Geun;Seol, Han-Shin;Park, Young-Ha;Kim, Gun-Do;Kim, Ki-Sup;Jung, Bo-Jun;Choi, Sung-Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.3
    • /
    • pp.171-179
    • /
    • 2016
  • In order to study correlation of the propeller cavitation performance between a full-scale ship and a model ship for the MR Tanker, the full-scale ship and the model tests were conducted. The full-scale ship test is composed of cavitation observation, pressure fluctuation and noise measurements, which are conducted using 2 observation windows and 8 pressure transducers installed inside the full-scale ship above the propeller. The model test in the Large Cavitation Tunnel(LCT) was conducted at the same conditions as that of the full-scale ship and its results are compared with those of the full-scale ship. Through the model-ship correlation analysis, it is considered that the experimental technique for the MR Tanker class ship was verified in LCT.

Experimental Study of the Flat & Twisted Rudder Characteristics Using Rudder Dynamometer in LCT (LCT에서 방향타 동력계를 이용한 평판 및 비틀림 방향타 특성의 실험적 연구)

  • Ahn, Jong-Woo;Paik, Bu-Geun;Park, Young-Ha;Seol, Han-Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.391-399
    • /
    • 2021
  • In order to investigate force and cavitation characteristics for the flat & twisted rudders in the Large Cavitation Tunnel (LCT), the rudder dynamometer was designed and manufactured. The measuring capacities of lift, drag and moment are ±1000 N, ±2000 N, and ±150 N-m, respectively. The present dynamometer uses the actuator with a harmonic drive to control the rudder angle without backlash. As the target ship is a military ship with twin shaft, each dynamometer was installed above the port & starboard rudders. After the installation of the model ship with all appendages, the model test composed of rudder force measurement and cavitation observation was conducted for the existing flat rudder & the designed twisted rudder. While the flat rudder showed the big difference of lift & moment between port & starboard, the twisted rudder presented a similar trend. The cavitation of the twisted rudder showed better characteristics than that of the flat rudder. Another set of model tests were conducted to investigate rudder performance by the change of the design propeller. There was little difference in rudder performance for the design propellers with slight geometric change. Through the model test, the characteristics of the flat & twisted rudders were grasped. On the basis of the present study, it is thought that the rudder with better performance would be developed.

Acoustically-enhanced particle dispersion in polystyrene/alumina nanocomposites

  • Philip, Mercy A.;Natarajan, Upendra;Nagarajan, Ramamurthy
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.121-133
    • /
    • 2014
  • Polymer nanocomposites are advanced nanomaterials which exhibit dramatic improvements in various mechanical, thermal and barrier properties as compared with the neat polymer. Polystyrene/ alumina nanocomposites were prepared by an ultrasound-assisted solution casting method at filler loadings ranging from 0.2 to 2% and also at different ultrasonic frequencies, viz. 58 kHz, 192/58 kHz, 430 kHz, 470 kHz and 1 MHz. The composites were subjected to mechanical property tests (tensile and impact tests) and cavitation erosion tests to study the enhancement in functional properties. Filler dispersion in the polymer matrix was observed by SEM analysis. The effect of frequency on filler dispersion in the matrix was studied by SEM analysis and functional property enhancement of the composite material. The composites prepared at dual (high/ low) frequency (192/58 kHz) were found to show better property enhancement at low filler loadings as compared with neat polymer and also with composites prepared without ultrasound, thus reinforcing the finding that ultrasound-assisted synthesis is a promising method for the synthesis of nanocomposites.

Enhancement of Anaerobic Biodegradability using the Solubilized Sludge by the Cavitation process (Cavitation에 의해 가용화된 슬러지의 혐기성 생분해도 향상에 관한 연구)

  • Kim, Dongha;Lee, Jaegyu;Jung, Euitaek;Jeong, Hoyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • In order to investigate the effective pretreatment methods in WAS(=waste activated sludge) solubilization, the values of SCOD yield per unit SS (SCOD/gSS.hr) were compared. After the hydrodynamic cavitation with pH of 12.5, SCOD increased to 7800 mg/L, SS decreased to 45 % and the solubilization rate was 29 %. Combination of alkality (pH 12.5) and the cavitation seems to be the optimal condition for sludge solubilization. After the cavitational pretreatment, efficiencies of anaerobic digestion of the unfiltered sludge(the control), raw sludge and pretreated sludge were evaluated with BMP(=biochemical methane potential) tests. For evaluation of the biodegradability characteristics of pretreated sewage sludge, the methane production has been measured for 6 months. The methane production of pretreated sludge increased 1.4 times than that of untreated sludge. The result indicates that the cavitationally pretreated sludge was a better biodegradability substrate in anaerobic condition compared to raw sludge. It is obvious that cavitational pretreatment could enhance not only solubilization but also biodegradability of WAS. In conclusion, cavitational pretreatment of WAS to convert the particulate into soluble portion was shown to be effective in enhancing the digestibility of the WAS.

High Frequency Signal Analysis of LOx Pump for Liquid Rocket Engine under Cavitating Condition (캐비테이션 환경에서의 액체로켓엔진용 산화제펌프의 고주파 신호 분석)

  • Kim, Dae-Jin;Kang, Byung Yun;Choi, Chang-Ho;Bae, Joon-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.61-67
    • /
    • 2018
  • High-frequency signals are analyzed at the inlet/outlet pipeline and pump casing during cavitation tests of the LOx pump for liquid rocket engines. Root-mean square values of all data are investigated with respect to cavitation number. The values of synchronous, harmonic, and cavitation instability frequencies are also calculated. Pressure pulsations of the inlet and outlet pipelines are affected by cavitation instabilities. The 3x component (i.e., the blade-passing frequency of the inducer) is predominant in the outlet pulsation sensor. This seems to be related to the fact that the number of impeller blades is a multiple of the number of the inducer blades. The cavitation instability is also measured at the accelerometer of the pump casing.

Study of the Resistance Test and Wall Blockage Correction Method for the Submerged Body in LCT (대형 캐비테이션터널에서 몰수체 저항시험 및 위벽효과 수정 기법 연구)

  • Ahn, Jong-Woo;Seol, Han-Shin;Park, Young-Ha;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.3
    • /
    • pp.133-139
    • /
    • 2020
  • In order to study the resistance test technique for the submerged body in Large Cavitation Tunnel (LCT), DARPA Suboff, submarine model publicly available was manufactured. DTRC released the resistance test data of DARPA Suboff conducted at ship speeds up to 18.0 knots in high-speed towing tank in 1990. As LCT is considered restricted waterways with walls, the resistance test results must be corrected with three wall blockage effects called buoyancy effect, solid blockage effect and wake blockage effect. Before correction, the resistance of LCT was 16~20 % higher than that of DTRC. After correction, the resistance and the resistance coefficients were compared with those of DTRC. The corrected resistance of LCT shows good agreement with that of DTRC. The residual resistance coefficient shows the difference according to the calculation method of buoyancy and frictional resistance coefficient. This paper suggests the best way for the calculation of residual resistance coefficient, On the basis of the present study, it is thought that the operating conditions for the propeller cavitation and noise tests can be drawn through LCT tests.

Performance Trial-Test of the Full-Scale Driving Pump for the Large Cavitation Tunnel(LCT) (대형캐비테이션터널(LCT) 실물 구동펌프 성능시운전)

  • Ahn, Jong-Woo;Kim, Gun-Do;Kim, Ki-Sup;Park, Young-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.428-434
    • /
    • 2015
  • The objective of the present study is to analyze the results of the trial-test for the full-scale driving pump, which is arranged in the LCT (Large Cavitation Tunnel). Firstly, the reasons of selecting the final design pump are introduced in terms of the performance analysis in model tests. The trial-test items for the full-scale driving pump are measurements of output current/voltage at the inverter of the main motor and the flow velocity in the LCT test section. The test results show the increase in flow rate of about 10.7% and the decrease in pump head of about 26%, compared with those of final design-pump specification. The motor power has the margin of about 22%. The performance analysis for the full-scale pump is conducted using the commercial code (CFX-10). The delivered power calculated with CFX-10 shows good agreement with that extracted from the full-scale pump test. It is found that CFX-10 is useful to analyze a full-scale pump.

Numerical Prediction of Marine Propeller BPF Noise Using FW-H Equation and Its Experimental Validation (FW-H 방정식을 이용한 선박 추진기 날개통과주파수 소음의 수치예측과 모형시험 검증)

  • Seol, Hanshin;Park, Cheolsoo;Kim, Ki-Sup
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.705-713
    • /
    • 2016
  • Underwater noise produced by ships has been becoming an increasing issue. A dominantly contributing noise source is a ship propeller. Therefore, it is important to predict the propeller noise at the propeller design stages. This study applied the acoustic analogy based on Ffowcs Williams equation for the prediction of the marine propeller BPF noise. A marine propeller BPF noise is investigated experimentally as well as numerically. Propeller BPF noise measurement and propeller cavitation observation tests are performed in the KRISO medium size cavitation tunnel. Numerical prediction schemes of marine propeller BPF noise are presented together with the noise measurement method. Propeller BPF noise predictions and experiments are performed under the various propeller operating conditions including non-cavitating and caveating conditions. Numerical and experimental results are compared and analyzed. It is shown that numerical prediction results are generally in good agreement with the measured data.

Experimental Study of the Interaction Characteristics for a Marine CRP in LCT (LCT에서 선박용 상호반전 프로펠러 상호작용 특성의 시험적 연구)

  • Ahn, Jong-Woo;Kim, Ki-Sup;Park, Young-Ha;Lee, Chang-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.2
    • /
    • pp.125-131
    • /
    • 2017
  • In order to develop test and performance analysis techniques for a CRP propulsion, a CRP dynamometer which can be installed inside the model ship was designed and manufactured. The object ship was the 16000TEU container carrier, which has test results for the single propeller. The design concept of the present CRP is that forward & after propellers have the same power ratio and their RPM ratio is 0.75:1. To begin with, we checked the performance of the CRP dynamometer through the calibration and then installed it inside the model ship. After the model ship setup including the design CRP and the rudder in the Large Cavitation Tunnel(LCT), a series of model tests composed of power ratio check, propeller behind wake(PBW) test, cavitation observation and pressure fluctuation tests was conducted. Through the model test and data analysis for CRP, the experimental technique was established and the improved method for CRP design was suggested.