• Title/Summary/Keyword: Cavitation flow

Search Result 542, Processing Time 0.021 seconds

Prediction of the Effective Wake of an Axisymmetric Body (축대칭 몰수체의 유효반류 추정)

  • Kim, Ki-Sup;Moon, Il-Sung;Ahn, Jong-Woo;Kim, Gun-Do;Park, Young-Ha;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.410-417
    • /
    • 2019
  • An axisymmetric submerged body(L=5.6m, Diam=0.53m) is installed in Large Cavitation Tunnel (LCT) of KRISO and the nominal and total velocities without and with the propeller in operation, respectively, are measured using Laser Doppler Velocimeter (LDV). The flow field is nearly axisymmetric except the wake of the supporting strut, and is considered ideal to study the hydrodynamic interaction between the propeller and the oncoming axisymmetric sheared flow. The measured velocity data are then provided to compute the propeller-induced velocity to get the effective velocity, which is defined by subtracting the propeller-induced velocity from the total velocity. We adopted, in computing the induced velocity, two different methods including the vortex lattice method and the vortex tube actuator model to evaluate the resultant effective velocity distribution. To secure a fundamental base of experimental data necessary for the research on the effective wake, we measured the drag of the submerged body, the nominal and total velocity distributions at various axial locations for three different tunnel water speeds.

A Study on High-Temperature Fuel Injection Characteristics through Swirl Injectors (스월 인젝터를 통한 고온 연료의 분사특성 연구)

  • Lee, Hyung Ju;Choi, Hojin;Kim, Ildoo;Hwang, Ki-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.11-19
    • /
    • 2013
  • An experimental study was conducted to investigate fuel injection characteristics through swirl injectors when the fuel was heated to very high temperature conditions. Three swirl injectors with different orifice diameters and swirler geometries were used to measure the flow coefficient (${\alpha}$) for the injection pressure ranges between 3 and 10 bar and the fuel temperature from 50 to $270^{\circ}C$. The results showed that the variation characteristics of ${\alpha}$ with respect to cavitation number ($K_c$) were highly dependent on both the orifice diameter and the swirler geometry. In addition, the characteristics of ${\alpha}$ variation with respect to AR, the area ratio of the flow through the swirler and the orifice, has revealed that the effect of boiling is retarded but the slope of decreasing ${\alpha}$ after the boiling effect is present tumbles as AR increases.

Numerical Study of Flow Characteristics in Elementary Paths of Velocity-Control Trim (속도 제어형 트림의 단위 요소 유로의 유동특성에 관한 수치적 연구)

  • Kim, Dae-Kwon;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.245-253
    • /
    • 2011
  • We investigate the flow characteristics of elementary-flow paths with $90^{\circ}$ bends; a velocity-control trim consists of such paths. For geometric similarity, the width and length of each path are selected, and the number of bends is 0, 4, or 8. The flow tests are conducted with the same flow-path elements. The numerical results are in good agreement with the experimental data. In elements without bends, the volume flow rate decreases with the length of the flow path, with a constant pressure drop between the inlet and the outlet. However, in flow paths with $90^{\circ}$ bends, it increases and then decreases with the length of the flow path. For a fixed number of $90^{\circ}$ bends, better pressure-drop characteristics are observed as the length of the flow path increases. For a fixed flow-path length, a flow-path element with more bends has a smoother pressure drop along the path.

SIMULATION OF THE DESIGN METHODOLOGY FOR HIGH PERFORMANCE AND EFFICIENT CAVITATOR (초월공동 수중운동체를 위한 캐비테이터 전산 유동 해석)

  • Park, S.I.;Park, W.G.;Jung, C.M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.188-192
    • /
    • 2009
  • A massive cavity is generated behind the underwater vehicles, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. when a underwater vehicle moves at very high speed in the underwater. At this point it makes supercavitating flow and the nose, ie., the cavitator is very important fator at the vehicle since it should be surrounded by the cavity. The present work has focused on the simulation of cavitation flow using the new cavitator. The governing equation is the Navier-Stokes equation based on homogeneous mixture model. For the code validation, the results from the present solver have been compared with experiments and other numerical results. A fairly good agreement with the experimental data and other numerical results have been obtained.

  • PDF

Study on Flow Mixing Effects in a High-Speed Journal Bearing

  • Chun, Sang-Myung
    • KSTLE International Journal
    • /
    • v.1 no.2
    • /
    • pp.76-82
    • /
    • 2000
  • Turbulence in journal bearing operation is examined and the thermal variability is studied for isothermal, convective and adiabatic conditions on the walls under aligned and misaligned conditions. Also, the effects of a contraction ratio at the cavitation region and the mixing between re-circulating oil and inlet oil on the fluid field of oil film are included. An algorithm for the solution of the coupled turbulent Reynolds and energy equations is used to examine the effects of the various factors. Heat convection is found to play only a small role in determining friction and load under no mixing condition. However, under realistic mixing condition, the heat convection cannot be ignored. The wall temperature and heat transfer have been found to be of secondary important factors to the mixing effectiveness at the groove and the final mixture temperature.

  • PDF

Development of a Three-Dimensional Euler Solver for Analysis of Basic Contraction Flow (수축부 기초 유동 해석을 위한 삼차원 Euler 방정식 풀개 개발)

  • Kim J.;Kim H. T.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.8-12
    • /
    • 1997
  • The three-dimensional Euler equations are solved numerically for the analysis of contraction flows in wind or water tunnels. A second-order finite difference method is used for the spatial discretization on the nonstaggered grid system and the 4-stage Runge-Kutta scheme for the numerical integration in time. In order to speed up the convergence, the local time stepping and the implicit residual-averaging schemes are introduced. The pressure field is obtained by solving the pressure-Poisson equation with the Neumann boundary condition. For the evaluation of the present Euler solver, numerical computations are carried out for three contraction geometries, one of which was adopted in the Large Cavitation Channel for the U.S. Navy. The comparison of the computational results with the available experimental data shows good agreement.

  • PDF

An Investigation of Lattice Boltzmann Multi-phase Model and it Application (래티스볼츠만 다상류 모델의 검토 및 응용)

  • Kang, Ho-Keun;Ahn, Soo-Whan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.269-270
    • /
    • 2006
  • A finite difference lattice Boltzmann model which allows us to simulate gas-liquid two-phase flows with large density difference, for instance, 800 times for air and water is considered. Two-particle model is used and the density difference is introduced by changing the acceleration according to the fluid density. Numerical measurement of surface tension agrees well with theoretical predictions. Simulations of two-phase phenomenon for phase-transition is carried out, showing applicability of the model for two-phase flows. The two-dimensional cavitating flow around a board set up in the fluid way is also simulated. As a result, it was confirmed that the FDLB method with two-particle model was effective in numerical simulation of cavitating flow and the bubble periodically grew up at the low pressure area behind the board, in which the fluid condition was influenced by the cavitation number.

  • PDF

Review on the Integrity Evaluation and Maintenance of Wall-Thinned Pipe (감육배관의 건전성평가 및 정비 관련 기술기준 고찰)

  • Lee, Sung Ho;Lee, Yo Seob;Kim, Hong Deok;Lee, Kyoung Soo;Hwang, Kyeong Mo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.51-60
    • /
    • 2015
  • Local wall thinning and integrity degradation caused by several mechanisms, such as flow accelerated corrosion, cavitation, flashing and/or liquid droplet impingement, is a main concern in secondary steam cycle piping system of nuclear power plants in terms of safety and operability. Thinned pipe management program (TPMP) has being developed and optimized to reduce the possibility of unplanned shutdown and/or power reduction due to pipe failure caused by wall thinning. In this paper, newest technologies, standards and regulations related to the integrity assessment, repair and replacement of thinned pipe component are reviewed. And technical improvement items in TPMP to secure the reliability and effectiveness are also presented.

RANS Simulation of a Tip-Leakage Vortex on a Ducted Marine Propulsor

  • Kim, Jin;Eric Peterson;Frederick Stern
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.1
    • /
    • pp.10-30
    • /
    • 2004
  • High-fidelity RANS simulations are presented for a ducted marine propulsor, including verification & validation (V&V) using available experimental fluid dynamics (EFD) data. CFDSHIP-IOWA is used with $\textsc{k}-\omega$ turbulence model and extensions for relative rotating coordinate system and Chimera overset grids. The mesh interpolation code PEGASUS is used for the exchange of the flow information between the overset grids. Intervals V&V for thrust, torque, and profile averaged radial velocity just downstream of rotor tip are reasonable in comparison with previous results. Flow pattern displays interaction and merging of tip-leakage and trailing edge vortices. In interaction region, multiple peaks and vorticity are smaller, whereas in merging region, better agreement with EFD. Tip-leakage vortex core position, size, circulation, and cavitation patterns for $\sigma=5$ also show a good agreement with EFD, although vortex core size is larger and circulation in interaction region is smaller.

A numerical parametric study on hydrofoil interaction in tandem

  • Kinaci, Omer Kemal
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.25-40
    • /
    • 2015
  • Understanding the effects of the parameters affecting the interaction of tandem hydrofoil system is a crucial subject in order to fully comprehend the aero/hydrodynamics of any vehicle moving inside a fluid. This study covers a parametric study on tandem hydrofoil interaction in both potential and viscous fluids using iterative Boundary Element Method (BEM) and RANSE. BEM allows a quick estimation of the flow around bodies and may be used for practical purposes to assess the interaction inside the fluid. The produced results are verified by conformal mapping and Finite Volume Method (FVM). RANSE is used for viscous flow conditions to assess the effects of viscosity compared to the inviscid solutions proposed by BEM. Six different parameters are investigated and they are the effects of distance, thickness, angle of attack, chord length, aspect ratio and tapered wings. A generalized 2-D code is developed implementing the iterative procedure and is adapted to generate results. Effects of free surface and cavitation are ignored. It is believed that the present work will provide insight into the parametric interference between hydrofoils inside the fluid.