The objective of this study was to determine the best performing switchgrass (Panicumvirgatum L.) cultivar with three different seeding dates as a bioenergy source in Republic of Korea. Split-plot in time with three replications was performed and three switchgrass cultivars, Carthage (CT), Cave-in-Rock (CIR), and Forestburg (FB) were used in this experiment from 2009 to 2012. Plots were seeded on April 23, May 4, and May 13, 2009 and were harvested once in November each year. No fertilizer was applied to the field for the first year; however, in second and third years (June 2010 and May 2011, respectively), N, $P_2O_5$ and K2O fertilizers were applied in 67,45 and 90 kg $ha^{-1}$, respectively. Soil pH (5.9) and climate condition including temperature ($10.4{\sim}17.5^{\circ}C$) and precipitation (89.4~109.8 mm $month^{-1}$) were suitable for switchgrass cultivation. Total dry matter yields were higher in CT and CIR compared to FB and were 16.9, 15.9, and 4.5 ton $ha^{-1}$, for CT, CIR, and FB, respectively (p<0.0001). The samples were analyzed for dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), crude fiber (CF), ether extract (EE), and ash. No significant differences in energy content (p = 0.96) and chemical composition among cultivars (p>0.05) were found. Seeding dates did not affect DM yield (ton $ha^{-1}$), chemical composition and energy content significantly (p>0.05). Significant difference was observed for heights among CT, CIR, and FB (177.59, 169.98, and 94.89 cm, respectively, p = 0.0002). In conclusion, based on soil characteristics and climate condition in Korea compared to other countries, switchgrass can be cultivated successfully. Considering dry matter yield and energy content of these three cultivars of switchgrass CT and CIR adapted better to climate in Middle Eastern of Republic of Korea than Forestburg for bioenergy purpose.