DOI QR코드

DOI QR Code

The Thermal Preference and the Selection of Hibernacula in Seven Cave-dwelling Bats

동굴성 박쥐 7종의 온도선호도와 동면처 선택

  • Kim, Sun-Sook (Ecosystem Service Research Team, National Institute of Ecology) ;
  • Choi, Yu-Seong (Ecology & Evolution Research Team, National Institute of Ecology) ;
  • Yoo, Jeong-Chil (Korea Institute of Ornithology and Dept. of Biology, Kyung Hee University)
  • 김선숙 (국립생태원 생태보전연구본부 생태서비스연구팀) ;
  • 최유성 (국립생태원 기초생태연구본부 생태진화연구팀) ;
  • 유정칠 (경희대학교 생물학과, 한국조류연구소)
  • Received : 2014.09.01
  • Accepted : 2014.10.21
  • Published : 2014.12.31

Abstract

Bats hibernating in caves and unused mines were surveyed during six hibernation periods (from December to February, 2005 and 2011) in Korea. We recorded 13,288 individuals of 11 species at 140 hibernacula (60 caves and 80 abandoned mines): Rhinolophus ferrumequinum (n=3,509), Eptesicus serotinus (n=6), Hypsugo alaschanicus (n=349), Miniopterus fuliginosus (n=5,919), Murina hilgendorfi (n=417), Myotis aurascens (n=294), Myotis bombinus (n=2), Myotis formosus (n=401), Myotis macrodactylus (M.mac, n=151), Myotis petax (n=2,131) and Plecotus ognevi (n=109). We studied the thermal preference and selection of hibernacula of seven dominant bat species. Four species (Myotis petax, Hypsugo alaschanicus, Plecotus ognevi and Murina hilgendorfi) hibernated mainly at the cold site below than $7^{\circ}C$, while three species (Myotis formosus, Rhinolophus ferrumequinum and Miniopterus fuliginosus) hibernated at warm site above than $7^{\circ}C$. Rhinolophus ferrumequinum had broad-ranged temperature zone for their hibernating site. The mean body temperature of each species was $2.64{\pm}0.98^{\circ}C$ for Murina hilgendorfi, $2.76{\pm}1.68^{\circ}C$ for Hypsugo alaschanicus, $2.78{\pm}0.98^{\circ}C$ for Plecotus ognevi, $4.52{\pm}1.02^{\circ}C$ for Myotis petax, $7.83{\pm}1.94^{\circ}C$ for Miniopterus fuliginosus, $9.19{\pm}2.35^{\circ}C$ for Rhinolophus ferrumequinum and $13.64{\pm}0.76^{\circ}C$ for Myotis formosus, respectively. The body temperatures of hibernating bats were closely related to the rock surface temperatures rather than the ambient temperatures. In conclusion, the diversity of bats community in hibernacula were closely related to the range of inner ambient temperature of hibernacula, and more species of bats were occupied at sites presenting a broad range of ambient temperatures.

동굴을 잠자리로 이용하는 동굴성 박쥐의 동면생태에 관한 연구를 위하여 2005년부터 2011년까지 6회의 동면기간 동안 수행하였다. 조사기간 동안 박쥐가 출현된 140개의 동면장소에서 관박쥐, 문둥이박쥐, 검은집박쥐, 긴가락박쥐, 관코박쥐, 대륙쇠큰수염박쥐, 흰배윗수염박쥐, 붉은박쥐, 큰발윗수염박쥐, 물윗수염박쥐, 토끼박쥐등 총 13,288개체를 확인하였다. 동굴성 박쥐 7종의 온도선호도는 종 간 차이를 나타냈다. 동굴성 박쥐 7종 가운데 붉은박쥐의 평균 체온은 $13.64{\pm}0.76^{\circ}C$로 가장 높았고, 다음으로 관박쥐와 긴가락박쥐의 평균 체온은 $9.19{\pm}2.35^{\circ}C$$7.83{\pm}1.94^{\circ}C$였다. 반면 저온을 선택한 관코박쥐의 체온은 $2.64{\pm}0.98^{\circ}C$, 토끼박쥐는 $2.78{\pm}0.98^{\circ}C$, 검은집박쥐는 $2.76{\pm}1.68^{\circ}C$, 물윗수염박쥐는 $4.4{\pm}1.1^{\circ}C$로 다른 3종(붉은박쥐, 긴가락박쥐, 관박쥐)의 온도선호도와 차이를 나타냈다. 종 간 차이를 나타낸 7종의 체온은 대기온도($T_a$)에 비해 암벽온도($T_r$)와 밀접하게 상관되었다. 동굴성 박쥐 7종의 동면장소 별 출현된 박쥐의 종 수는 동면장소의 온도특성에 의해 차이를 나타냈다. 동면장소의 온도가 고온특성을 나타내고 대기온도 범위가 좁은 동면장소(HTR, 동면저의 최저온도가 $7^{\circ}C$ 이상)에 출현된 박쥐 종수는 $1.44{\pm}0.53$로 가장 낮았지만, 동면장소의 온도가 저온특성이고 대기온도 범위가 좁은 동면장소(LTR, 최고온도가 $7^{\circ}C$ 이하인 곳)에서 출현된 박쥐의 종수는 $2.77{\pm}1.72$였다. 동면장소의 온도가 저온과 고온특성을 모두 포함하는 대기온도 범위가 넓은 동면장소(WR)에서 $3.02{\pm}1.36$종으로 가장 높게 나타났다.

Keywords

References

  1. Agosta, S.J. 2002. Habitat use, diet and roost selection by the big brown bat (Eptesicus fuscus) in North America: A case for conserving an abundant species. Mammal Review 32: 179-198. https://doi.org/10.1046/j.1365-2907.2002.00103.x
  2. Albayrak, I. 1993. The bats of Western Turkey and their distribution (Mammalia: Chiroptera). Turkish Journal of Zoology 17: 237-257.
  3. Arlettaz, R., C. Ruchet, J. Aeschimann, E. Brun, M. Genoud and P. Vogel. 2000. Physiological traits affecting the distribution and wintering strategy of the bat Tadarida teniotis. Ecology 81(4):1004-1014. https://doi.org/10.1890/0012-9658(2000)081[1004:PTATDA]2.0.CO;2
  4. Barclay, R.M., M.C. Kalcounis, L.H. Crampton, C. Stefan, M.J. Vonhof, L. Wilkinson and R.M. Brigham, 1996. Can external radio transmitters be used to assess body temperature and torpor in bats? Journal of Mammalogy 77: 1102-1106. https://doi.org/10.2307/1382791
  5. Bogdanowicz, W. and Z. Urbanczyk. 1983. Some ecological aspects of bats hibernating in city of Poznan. Acta Theriologica 28: 371-385. https://doi.org/10.4098/AT.arch.83-32
  6. Boyles, J.G., B. Smit and A.E. McKechnie. 2011. Does use of the torpor cut-off method to analyze variation in body temperature cause more problems than it solves? Journal of Thermal Biology 36(7): 373-375. https://doi.org/10.1016/j.jtherbio.2011.07.007
  7. Boyles, J.G., J.J. Storm and V. Brack Jr. 2008. Thermal benefits of clustering during hibernation: a field test of competing hypotheses on Myotis sodalis. Functional Ecology 22: 632-636. https://doi.org/10.1111/j.1365-2435.2008.01423.x
  8. Boyles, J.G., M.B. Dunbar and J.O. Whitaker. 2006. Activity following arousal in winter in North American vespertilionid bats. Mammal Review 36: 267-280. https://doi.org/10.1111/j.1365-2907.2006.00095.x
  9. Boyles, J.G., M.B. Dunbar, J.J. Storm and V. Brack. 2007. Energy availability influences microclimate selection of hibernating bats. Journal of Experimental Biology 210: 4345-4350. https://doi.org/10.1242/jeb.007294
  10. Brack Jr, V. 2007. Temperatures and locations used by hibernating bats, including Myotis sodalis (Indiana bat), in a limestone mine: Implications for conservation and management. Environmental Management 40: 739-746. https://doi.org/10.1007/s00267-006-0274-y
  11. Busotti, S., A. Terlizzi, S. Fraschetti, G. Belmonte and F. Boero. 2006. Spatial and temporal variability of sessile benthos in shallow Mediterranean marin caves. Marin Ecology Progress Series 325: 109-19. https://doi.org/10.3354/meps325109
  12. CHA. 2004. The report of caves in Chungcheongbuk-do I.
  13. CHA. 2006. The report of caves in Chungcheongbuk-do II.
  14. CHA. 2008. The report of caves in Chungcheongbuk-do III.
  15. Dunbar, M.B. and R.M. Brigham, 2010. Thermoregulatory variation among populations of bats along a latitudinal gradient. Journal of Comparative Physiology B 180: 885-893. https://doi.org/10.1007/s00360-010-0457-y
  16. Dunbar, M.B. and T.E. Tomasi. 2006. Arousal patterns, metabolic rate, and an energy budget for eastern red bats (Lasiurus borealis) in winter. Journal of Mammalogy 87: 1096-1102. https://doi.org/10.1644/05-MAMM-A-254R3.1
  17. Dwyer, P.D. 1971. Temperature regulation and cave-dwelling in bats: an evolutionary perspective. Mammalia 35: 424-455.
  18. Fleming, T.H. and P. Eby. 2003. Ecology of bat migration. Bat ecology, p. 156-208. In: Bat Ecology (Kunz T.H. and M.B. Fenton, eds.). The University of Chicago Press, Chicago.
  19. Furman, A. and A. Ozgul. 2002. Distribution of cave-dwelling bats and conservation status of underground habitats in the Istanbul area. Ecological Research 17: 69-77. https://doi.org/10.1046/j.1440-1703.2002.00468.x
  20. Geiser, F. 2004. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annual Review of Physiology 66: 239-274. https://doi.org/10.1146/annurev.physiol.66.032102.115105
  21. Geiser, F. and C. Stawski. 2011. Hibernation and torpor in tropical and subtropical bats in relation to energetics, extinctions, and the evolution of endothermy. Integrative and Comparative Biology 51: 337-348. https://doi.org/10.1093/icb/icr042
  22. Geiser, F. and G.J. Kenagy. 1988. Torpor duration in relation to temperature and metabolism in hibernating ground squirrels. Physiological Zoology 61(5): 442-449.
  23. Geiser, F. and T. Ruf. 1995. Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiological Zoology 68: 935-966.
  24. Grigg, G. and L. Beard. 2000. Hibernation by echidnas in mild climates: hints about the evolution of endothermy. p. 5-19. In: Life in the Cold (Heldmaier, G. and M. Klingenspor, eds.). Springer, Berlin Heidelberg.
  25. Grinevitch, L., S.L. Holroyd and R.M.R. Barclay. 1995. Sex differences in the use of daily torpor and foraging time by big brown bats (Eptesicus fuscus) during the reproductive season. Journal of Zoology 235: 301-309.
  26. Hock, R.I. 1951. The metabolic rates and body temperatures of bats. The Biological Bulletin 101: 289-299. https://doi.org/10.2307/1538547
  27. Humphries, M.M., D.W. Thomas and D.L. Kramer. 2003. The role of energy availability in mammalian hibernation: a cost benefit approach. Physiological and Biochemical Zoology 76: 165-179. https://doi.org/10.1086/367950
  28. Humphries, M.M., D.W. Thomas and J.R. Speakman. 2002. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418: 313-316. https://doi.org/10.1038/nature00828
  29. Humphries, M.M., S. Boutin, D.W. Thomas, J.D. Ryan, C. Selman, A.G. Mcadam, D. Berteaux and J.R. Speakman. 2005. Expenditure freeze: the metabolic response of small mammals to cold environments. Ecology Letters 8: 1326-1333. https://doi.org/10.1111/j.1461-0248.2005.00839.x
  30. Jurczyszyn, M. and R. Bajaczyk. 2001. Departure dynamics of Myotis daubentonii (Kuhl, 1817) (Mammalia, Chiroptera) from their hibernaculum. Mammalia 65: 121-130.
  31. Kim, S.S., Y.S. Choi, B.H. Kim and J.C. Yoo. 2009. The current distribution and habitat preferences of hibernating Myotis formosus in Korea. Journal of Ecology and Field Biology 32: 191-195. https://doi.org/10.5141/JEFB.2009.32.3.191
  32. Kim, S.S. 2005. Hibernation Ecology of Myotis formosus. M.Sc. Thesis, Kyung Hee University. 66p.
  33. Kim, S.S. 2010. Winter roosting ecology and behavior of seven cave-dwelling species of bats in Korea. D. Ph. Thesis, Kyung Hee University. 167p.
  34. Kim, S.S., Y.S. Choi and J.C. Yoo. 2013. Thermal preference and hibernation period of Hodgson's bats (Myotis formosus) in the temperate zone: how does the phylogenetic origin of a species affect its hibernation strategy?. Canadian Journal of Zoology 91: 47-55. https://doi.org/10.1139/cjz-2012-0145
  35. Kokurewicz, T. 2004. Sex and age related habitat selection and mass dynamics of Daubenton's bats Myotis daubentonii (Kuhl, 1817) hibernating in natural conditions. Acta Chiropterologica 6: 121-144. https://doi.org/10.3161/001.006.0110
  36. Korea Meteorological Administration. 2012. The climate atlas of Korea. Seoul.
  37. Kortner, G. and F. Geiser. 1998. Ecology of natural hibernation in the marsupial mountain pygmy-possum (Burramys parvus). Oecologia 113: 170-178. https://doi.org/10.1007/s004420050365
  38. Krebs, C.J. 2001. Ecology: the experimental analysis of distribution and abundance. Benjamin Cummings, San Francisco, California, USA.
  39. Kunz, T.H. and L.F. Lumsden. 2003. Ecology of cavity and foliage roosting bats. p. 3-89. In: Bat Ecology (Kunz, T.H. and M.B. Fenton, eds.). The University of Chicago Press, Chicago.
  40. Kunz, T.H., D.W. Thomas, G.C. Richards, C.R. Tidemann, E.D. Pierson and P.A. Racey. 1996. Observational techniques for bats. Measuring and monitoring biological diversity: standard methods for mammals 105-114.
  41. Kunz, T.H., M. Betke, N.I. Hristov and M. Vonhof. 2009. Methods for assessing colony size, population size, and relative abundance of bats, p. 133-157. In: Ecological and behavioral methods for the study of bats (Kunz, T.H. and S. Parsons, eds.). Johns Hopkins University Press, Baltimore, Maryland, .
  42. Lee, S.I. and S.W. Son. 1987. An Investigation on the distribution of bats in Chollanam-buk Do. Theses collection, Kyungnam University 2: 177-187.
  43. Lovegrove, B.G. 2000. Daily heterothermy in mammals: coping with unpredictable environments. p. 29-40. In: Life in the Cold (Heldmaier, G. and M. Klingenspor, eds.). Eleventh International Hibernation Symposium. Springer-Verlag, Berlin.
  44. Lyman, C.P., J.S. Willis, A. Malan and L.C.H. Wang, eds. 1982. Hibernation and Torpor in Mammals and Birds. Academic Press, New York.
  45. Masing, M. and L. Lutsar. 2007. Hibernation temperatures in seven species of sedentary bats (Chiroptera) in northeastern Europe. Acta Zoologica Lituanica 17: 47-55. https://doi.org/10.1080/13921657.2007.10512815
  46. McNab, B.K. 1974. The behavior of temperate cave bats in a subtropical environment. Ecology 55: 943-958. https://doi.org/10.2307/1940347
  47. McNab, B.K. 1982. Evolutionary alternative in the physiological ecology of bats. p. 151-196. In: Ecology of Bats (Kunz, T.H., ed.). Plenum Publishing Corporation, New York.
  48. Mitchell-Jones, A.J. and A.P. McLeish, 2004. Bat workers' manual, 3rd edn. Joint Nature Conservation Committee.
  49. Nagel, A. and R. Nagel. 1991. How do bats choose optimal temperatures for hibernation? Comparative Biochemistry and Physiology Part A 99: 323-326.
  50. Nedergaard, J., B. Cannon and R. Jaenicke. 1990. Mammalian hibernation. Philosophical Transactions of the Royal Society of London. B, Biological Sciences 326: 669-686. https://doi.org/10.1098/rstb.1990.0038
  51. NIBR. 2012a. National List of Species of Korea "Vertebrates".
  52. NIBR. 2012b. DNA Barcode system for Korean indigenous species.
  53. NIER. 2004. The report of caves survey in Korea.
  54. O'Donnell, C.F.J. 2000. Conservation status and causes of decline of the threatened New Zealand long-tailed bat Chalinolobus tuberculatus (Chiroptera: Vespertilionidae). Mammal Review 30: 89-106. https://doi.org/10.1046/j.1365-2907.2000.00059.x
  55. Perry, R.W. 2013. A review of factors affecting cave climates for hibernating bats in temperate North America. Environmental Review 21: 28-39. https://doi.org/10.1139/er-2012-0042
  56. Pyeongchang-Gun. 2005. The report of caves investigation in Pyeongchang-gun.
  57. Racey, P.A. 2009. Bats: status, threat and conservation successes-Introduction. Endangered Species Research 8: 1-3. https://doi.org/10.3354/esr00213
  58. Raesly, R.L. and J.E. Gates. 1987. Winter habitat selection by north temperate cave bats. American Midland Naturalist 118: 15-13. https://doi.org/10.2307/2425624
  59. Ransome, R.D. 1968. The distribution of the greater horse-shoe bat, Rhinolophus ferrumequinum, during hibernation, in relation to environmental factors. Journal of Zoology 154: 77 -112.
  60. Richter, A.R., S.R. Humphrey, J.B. Cope and V. Brack, Jr. 1993. Modified cave entrances: thermal effect on body mass and resulting decline of endangered Indiana bats (Myotis sodalis). Conservation Biology 7: 407-415. https://doi.org/10.1046/j.1523-1739.1993.07020407.x
  61. Romero, A. 2009. Cave Biology: Life in Darkness. Cambridge University Press.
  62. Ruczynski, I., I. Ruczynska and K. Kasprzyk. 2005. Winter mortality rates of bats inhabiting man-made shelters (northern Poland). Acta Theriologica 50: 161-166. https://doi.org/10.1007/BF03194479
  63. Sandel, J.K., G.R. Benetar, K.M. Burke, C.W. Walker, T.E. Lacher, Jr. and R.L. Honeycutt. 2001. Use of selection of winter hibernacula by the Eastern Pipistrelle (Pipstrelllus subflavus) in Texas. Journal of Mammalogy 82: 173-178. https://doi.org/10.1093/jmammal/82.1.173
  64. Schmidt-Nielsen, K. 1997. Animal physiology: adaptation and environment. Cambridge University Press, Cambridge, England.
  65. Solick, D.I. and R.M.R. Barclay. 2007. Geographic variation in the use of torpor and roosting behaviour of female western long-eared bats. Journal of Zoology 272: 358-366. https://doi.org/10.1111/j.1469-7998.2006.00276.x
  66. Son, S.W. 1978. An Investigation on the distribution of the South-West Kyung Nam Bats. Theses collection, Kyungnam University 6: 349-361.
  67. Son, S.W. 1979. An Investigation on the distribution of bats in South and North Kyung Sang Nam Buk Do. Theses collection, Kyungnam University 6: 460-476.
  68. Son, S.W. 1980. The collection list chiroptera from Korea. Theses collection, Kyungnam University 1: 175-181.
  69. Son, S.W. 1981. Notes on some bats from the JeaJoo Islands. Theses collection, Kyungnam University 8: 161-168.
  70. Son, S.W. 1996. The geographical distribution of the bats (Chiroptera) in Kangwon-Do. The Journal of the Basic Science Research Institute 10: 211-217.
  71. Son, S.W., G.S. Oh, S.I. Lee and J.H. Lee. 1991. The geographical distribution of the bats (Chiroptera) in Ch'ungch' onam-buk Do. Institute of Environment Research. Kyungnam University 13: 69-79.
  72. Son, S.W., M.H. Yoon, T. Mori and T.A. Uchida. 1987. Sperm storage in the reproductive tract and prolonged survival of the Graafian follicle in the female orange whiskered bat, Myotis formosus tsuensis of Korea. Journal of Mammalogical Society of Japan 12: 1-14.
  73. Song, X., G. Kortner and F. Geiser. 1997. Thermal relations of metabolic rate reduction in a hibernating marsupial. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 273: R2097-R2104.
  74. Speakman, J.R. and A. Rowland. 1999. Preparing for inactivity: how insectivorous bats deposit a fat store for hibernation. Proceedings of the Nutrition Society 58: 123-131. https://doi.org/10.1079/PNS19990017
  75. Speakman, J.R. and P.A. Racey. 1989. Hibernal ecology of the pipistrelle bat: energy expenditure, water requirements and mass loss, implications for survival and the function of winter emergence flights. Journal of Animal Ecology 58: 797-813. https://doi.org/10.2307/5125
  76. Speakman, J.R. and D.W. Thomas. 2003. Physiological ecology and energetics of bats, p. 430-490. In: Bat Ecology (Kunz, T.H. and M.B. Fenton, eds.). The University of Chicago Press, Chicago.
  77. Thomas, D.W. 1995. Hibernating bats are sensitive to nontactile human disturbance. Journal of Mammalogy 76: 940-946. https://doi.org/10.2307/1382764
  78. Thomas, D.W., M. Dorais and J.M. Bergeron. 1990. Winter energy budgets and cost of arousals for hibernating little brown bats, Myotis lucifugus. Journal of Mammalogy 71: 475-479. https://doi.org/10.2307/1381967
  79. Tidemann, C.R. and S.C. Flavel. 1987. Factors affecting choice of diurnal roost site by tree-hole bats (Microchiroptera) in southeastern Australia. Wildlife Research 14: 459-473. https://doi.org/10.1071/WR9870459
  80. Tuttle, M.D. 2003. Estimating population sizes of hibernating bats in caves and mines, p. 31-39. In: Monitoring trends in bat populations of the United States and territories: problems and prospects (O'shea, T.J. and M.A. Bogan, eds.). U.S. Geological Survey.
  81. Tuttle, M.D. and D. Stevenson. 1982. Growth and survival of bats, p. 105-150. In: Bat Ecology (Kunz, T.H. and M.B. Fenton, eds.). The University of Chicago Press, Chicago.
  82. Tuttle, M.D. and J. Kennedy. 2002. Thermal requirements during hibernation. p. 68-78. In: The Indiana Bat: Biology and Management of an Endangered Species (Kurta, A. and J. Kennedy, eds.). Bat Conservation International.
  83. Valenciuc, N. 1989. Dynamics of movements of bats inside some shelters. p. 511-517. In: European bat research (Hanak, V., I. Horaeek and J. Gaisler, eds). Charles University Press, Praha.
  84. Webb, P.I., J.R. Speakman and P.A. Racey. 1996. How hot is a hibernaculum? A review of the temperatures at which bats hibernate. Canadian Journal of Zoology 74: 761-765. https://doi.org/10.1139/z96-087
  85. Wilkinson, G.S. and J.M. South. 2002. Life history, ecology and longevity in bats. Aging Cell 1: 124-131. https://doi.org/10.1046/j.1474-9728.2002.00020.x
  86. Willis, C.K. and R.M. Brigham. 2004. Roost switching, roost sharing and social cohesion: forest-dwelling big brown bats (Eptesicus fuscus) conform to the fission-fusion model. Animal Behaviour 68: 495-505. https://doi.org/10.1016/j.anbehav.2003.08.028
  87. Yeongwol-Gun. 2001. The report of caves investigation in Yeongwol-gun.
  88. Yoon, M.H. 2009. A New Record of Nyctalus furvus (Chiroptera: Vespertilionidae) from Korea, and the description of Tadarida teniotis (Chiroptera: Molossidae), a rarely collected Bat in Korea. Animal Systematics, Evolution and Diversity 25: 87-93.
  89. Yoon, M.H. and S.W. Son. 1989. Studies on Taxonomy and of Bats Inhabiting Korea I. Taxonomical review of one rhinolophid and six vespertilionid bats, and the Korean microchiropteran faunal succession. Korean Journal of Zoology 32: 374-392.
  90. Yoon, M.H., S.H. Han, H.S. Oh and J.G. Kim. 2004. The mammals of Korea. Seoul.
  91. Zar, J.H. 1999. Biostatistical Analysis, 4th ed. Prentice Hall International, London.