• Title/Summary/Keyword: Cationic liposomes

Search Result 51, Processing Time 0.033 seconds

Synthesis and Optimization of Cholesterol-Based Diquaternary Ammonium Gemini Surfactant (Chol-GS) as a New Gene Delivery Vector

  • Kim, Bieong-Kil;Doh, Kyung-Oh;Bae, Yun-Ui;Seu, Young-Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.93-99
    • /
    • 2011
  • Amongst a number of potential nonviral vectors, cationic liposomes have been actively researched, with both gemini surfactants and bola amphiphiles reported as being in possession of good structures in terms of cell viability and in vitro transfection. In this study, a cholesterol-based diquaternary ammonium gemini surfactant (Chol-GS) was synthesized and assessed as a novel nonviral gene vector. Chol-GS was synthesized from cholesterol by way of four reaction steps. The optimal efficiency was found to be at a weight ratio of 1:4 of lipid:DOPE (1,2-dioleoyl-L-${\alpha}$- glycero-3-phosphatidylethanolamine), and at a ratio of between 10:1~15:1 of liposome:DNA. The transfection efficiency was compared with commercial liposomes and with Lipofectamine, 1,2-dimyristyloxypropyl-3-dimethylhydroxyethylammonium bromide (DMRIE-C), and N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTAP). The results indicate that the efficiency of Chol-GS is greater than that of all the tested commercial liposomes in COS7 and Huh7 cells, and higher than DOTAP and Lipofectamine in A549 cells. Confirmation of these findings was observed through the use of green fluorescent protein expression. Chol-GS exhibited a moderate level of cytotoxicity, at optimum concentrations for efficient transfection, indicating cell viability. Hence, the newly synthesized Chol-GS liposome has the potential of being an excellent nonviral vector for gene delivery.

Transfection Property of a New Cholesterol-Based Cationic Lipid Containing Tri-2-Hydroxyethylamine as Gene Delivery Vehicle

  • Kim, Bieong-Kil;Doh, Kyung-Oh;Hwang, Guen-Bae;Seu, Young-Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.866-871
    • /
    • 2012
  • A novel cholesterol-based cationic lipid containing a tri-2-hydroxyethylamine head group and ether linker (Chol-THEA) was synthesized and examined as a potent gene delivery vehicle. In the preparation of cationic liposome, the addition of DOPE as helper lipid significantly increased the transfection efficiency. To find the optimum transfection efficiency, we screened various weight ratios of DOPE and liposome/DNA (N/P). The best transfection efficiency was found at the Chol-THEA:DOPE weight ratio of 1:1 and N/P weight ratio of 10~15. Most of the plasmid DNA was retarded by this liposome at the optimum N/P weight ratio of 10. The transfection efficiency of Chol-THEA liposome was compared with DOTAP, Lipofectamine, and DMRIE-C using the luciferase assay and GFP expression. Chol-THEA liposome with low toxicity had better or similar potency of gene delivery compared with commercial liposomes in COS-7, Huh-7, and MCF-7 cells. Therefore, Chol-THEA could be a useful non-viral vector for gene delivery.

Immunoliposomes Carrying Plasmid DNA : Preparation and Characterization

  • Kim, Na-Hyung;Park, Hyo-Min;Chung, Soo-Yeon;Go, Eun-Jung;Lee , Hwa-Jeong
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1263-1269
    • /
    • 2004
  • The objective of this study was to characterize immunoliposomes carrying plasmid DNA with optimal encapsulation efficiency and antibody density. Plasmid DNA was encapsulated by the freezing/thawing method into liposomes composed of POPC (1-palmitoyl-2-oleoyl-sn-glycerol- 3-phosphocholine), DDAB (didodecyl dimethyl ammonium bromide), DSPE-PEG 2000 (distearoyl phosphatidyl ethanolamine polyethylene glycol 2000) and DSPE-PEG 2000-maleimide. The liposomes carrying plasmid DNA were extruded through two stacked polycarbonate filters, of different pore size, to control the liposome size. Then, rat IgG molecules were conjugated to the liposomes. The immunoliposomes containing plasmid DNA were separated from the free plasmid DNA and unconjugated IgG by Sepharose CL-4B column chromatography. The DNA amount encapsulated was affected by DDAB (cationic lipid) concentration, the initial amount of plasmid DNA between 10 ${\mu}g$ and 200 ${\mu}g$, the total lipid amount and plasmid DNA size, but not significantly by liposome size. By varying the ratio of DSPE-PEG 2000-maleimide to IgG, the number of IgG molecules per liposome was changed significantly.

Enhanced p53 Gene Transfer to Human Ovarian Cancer Cells using Cationic Nonviral Vector. DOC

  • Choi, Eun-Jeong;Choi, Sung-Hee;Park, Jeong-Sook;Ahn, Woong-Shick;Kim, Chong-Kook
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.427.2-428
    • /
    • 2002
  • Previously we formulated new cationic liposomes, DDC, composed of DOTAP. DOPE, and cholesterol (Chol) in 1 : 0.7 : 0.3 molar ratios, and showed that DDC efficiently deliver the plasmid DNA into ovarian cancer cell lines. Here, wild type p53 DNA was transfected into ovarian cancer cells, using the DOC as a nonviral vector and the expression and activity of p53 gene were evaluated in vitro and in vivo. The complexes of plasmid DNA (pp53-EGFP) and DDC were transfected into OVCAR-3 cells. The gene expression was determined by RT -PCR and western blot analysis. (omitted)

  • PDF

Optimization of Gene Delivery Mediated by Lipoplexes and Electroporation into Mouse Mesenchymal Stem Cells

  • Kim, Jong-Chul;Kim, Hong-Sung;Lee, Yeon-Kyung;Kim, Jung-Seok;Park, Sang-Il;Jung, Hwa-Yeon;Park, Yong-Serk
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.265-272
    • /
    • 2009
  • Recently, mesenchymal stem cells (MSCs) began to be utilized as a vehicle for ex vivo gene therapy based on their plasticity. Effective and safe transfection of therapeutic genes is a critical step for genetic modification of MSCs. Therefore, optimization of in vitro gene delivery into MSCs is essential to provide genetically modified stem cells. In this study, various cationic liposomes, O,O'-dimyristyl-N-lysyl aspartate (DMKD), DMKD/cholesterol, O,O'-dimyristyl-N-lysyl glutamate (DMKE), DMKE/cholesterol, and N-[1-(2,3-dioleoyloxy)]-N,N,N-trimethylammonium propane methyl sulfate (DOTAP)/cholesterol, were mixed with plasmid DNA encoding luciferase (pAAV-CMV-Luc) at varied ratios, and then used for transfection to MSCs under varied conditions. The MSCs were also transfected by electroporation under varied conditions, such as voltage, pulse length, and pulse interval. According to the experimental results, electroporation-mediated transfection was more efficient than cationic liposome-mediated transfection. The best MSC transfection was induced by electroporation 3 times pulses for 2 ms at 200 V with 10 seconds of a pulse interval.

  • PDF

Effect of Lipid Compositions on Gene Transfer into 293 Cells Using Sendai F/HN-virosomes

  • Kim, Hong-Sung;Park, Yong-Serk
    • BMB Reports
    • /
    • v.35 no.5
    • /
    • pp.459-464
    • /
    • 2002
  • Fusogenic liposomes that incorporate Sendai virus envelope proteins, so-called Sendai virosomes, have been developed for in vitro and in vivo genetic modification of animal cells. In this study, several different virosomes of varying lipid compositions were formulated and their in vitro gene-transfer efficiencies compared. The virosomes were prepared by quantitative reconstitution of the Sendai envelope, fusion (F) and hemagglutinin-neuraminidase (HN) proteins into liposomal vesicles. Virosomes that contained luciferase reporter genes were tested in 293 transformed human kidney cells. F/HN-virosomes that were prepared with an artificial Sendai viral envelope (ASVE-virosomes) or phosphatidylserine (PS-virosomes) exhibited an 8- or 6-fold higher gene-transfer efficiency than cationic liposomes that were made with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). F/HN-virosomes that were prepared with phosphatidic acid (PA-virosomes) instead of PS were less efficient in gene transfer than either ASVE- or PS-virosomes. In addition, the genetransfer capability of ASVE- and PS-virosomes was maximal at a $Ca^{2+}$ concentration of 510 mM. These results suggest that the incorporated lipid components significantly affect the in vitro gene transfer that is mediated by Sendai F/HN-virosomes.

Antifungal Activity of a Synthetic Cationic Peptide against the Plant Pathogens Colletotrichum graminicola and Three Fusarium Species

  • Johnson, Eric T.;Evans, Kervin O.;Dowd, Patrick F.
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.316-321
    • /
    • 2015
  • A small cationic peptide (JH8944) was tested for activity against a number of pathogens of agricultural crops. JH8944 inhibited conidium growth in most of the tested plant pathogens with a dose of $50{\mu}g/ml$, although one isolate of Fusarium oxysporum was inhibited at $5{\mu}g/ml$ of JH8944. Most conidia of Fusarium graminearum were killed within 6 hours of treatment with $50{\mu}g/ml$ of JH8944. Germinating F. graminearum conidia required $238{\mu}g/ml$ of JH8944 for 90% growth inhibition. The peptide did not cause any damage to tissues surrounding maize leaf punctures when tested at a higher concentration of $250{\mu}g/ml$ even after 3 days. Liposomes consisting of phosphatidylglycerol were susceptible to leakage after treatment with 25 and $50{\mu}g/ml$ of JH8944. These experiments suggest this peptide destroys fungal membrane integrity and could be utilized for control of crop fungal pathogens.

Spontaneous Vesicle Formation in Aqueous Mixtures of Cationic Gemini Surfactant and Sodium Lauryl Ether Sulfate

  • Cheon, Ho-Young;Jeong, Noh-Hee;Kim, Hong-Un
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.107-114
    • /
    • 2005
  • Molecular aggregates of surfactant molecules consisting of one or more bilayers arranged in a hollow, closed, usually spherical geometry are termed “esicles”or “iposomes” In recent years it has been found that in certain systems the vesicular structure forms spontaneously and is long lived, and it has been suggested that these structures may in fact constitute the equilibrium state in these cases (as is true of micelles) This paper deals with the mixed CMC, vesicles, phase behavior, phase transition, geometrical structure, their formation and characterization in the aqueous solutions of mixed cationic/anionic surfactants systems. TEM micrographs revealed that the vesicles were of spherical shape and that their size was of around 180 nm. The zeta potentials are positive at CGS1-rich regions and negative at SLES-rich regions. In the region where SLES/CGS1 (6/4), the zeta potentials are very small, implying that the vesicles at this surfactant ratio may be less stable. At other surfactant ratios, the vesicles are thought to be stable, supported by large absolute values of zeta potentials and little change in UV absorbance for several months.

Analysis of the Interactive Characteristic of Environmental Toxic Peptide and Phospholipid (환경 독성 Peptide의 인지질과의 상호 작용 특성 분석)

  • 이봉헌;박흥재
    • Journal of Environmental Science International
    • /
    • v.12 no.1
    • /
    • pp.77-80
    • /
    • 2003
  • The interaction of mastoparan B, a cationic tetradecapeptide amide isolated from the hornet Vespa basalis, with phospholipid bilayers was studied with synthetic mastoparan B and its analogue with Ala instead of hydrophobic 12th amino acid residue in mastoparan B. MP-B and its derivative, [12-Ala]MP-B were synthesized by the solid-phase peptide synthesis method. MP-B and its analogue, [12-Ala]MP-B adopted an unordered structure in buffer solution. In the presence of neutral and acidic liposomes, the peptides took an $\alpha$-helical structure. The two peptides interacted with neutral and acidic lipid bilayers. These results indicated that the hydrophobic face in the amphipathic $\alpha$-helix of MP-B critically affected the biological activity and helical content.

Conformation and Biological Activity of Mastoparan B and Its Analogs I

  • 박남규;서정길;구희정;이산나무;Gohsuke Sugihara;김광호;박장수;강신원
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.50-56
    • /
    • 1997
  • The mode of action of mastoparan B, an antimicrobial cationic tetradecapeptide amide isolated from the hornet Vespa basalis, toward phospholipid bilayers was studied with synthetic mastoparan B and its analogs with individual Ala instead of hydrophobic amino acids (1-Ile, 3-Leu, 6-Leu, 7-Val, 9-Trp, 13-Val, 14-Leu) in mastoparan B. Mastoparan B and its analogs were synthesized by the solid-phase method. Circular dichroism spectra showed that mastoparan B and its analogs adopted an unordered structure in buffer solution. In the presence of neutral and acidic liposomes, most of the peptides took an α-helical structure. The calcein leakage experiment indicated that mastoparan B interacted strongly with neutral and acidic lipid bilayers than its analogs. Mastoparan B also showed a more or less highly antimicrobial activity and hemolytic activity for human erythrocytes than its analogs. These results indicate that the hydrophobic face in the amphipathic α-helix of mastoparan B critically affect biological activity and helical contents.