DOI QR코드

DOI QR Code

Antifungal Activity of a Synthetic Cationic Peptide against the Plant Pathogens Colletotrichum graminicola and Three Fusarium Species

  • Johnson, Eric T. (Crop Bioprotection Research Unit, USDA Agricultural Research Service) ;
  • Evans, Kervin O. (Renewable Product Technology Research Unit, USDA Agricultural Research Service) ;
  • Dowd, Patrick F. (Crop Bioprotection Research Unit, USDA Agricultural Research Service)
  • Received : 2015.04.15
  • Accepted : 2015.05.30
  • Published : 2015.09.01

Abstract

A small cationic peptide (JH8944) was tested for activity against a number of pathogens of agricultural crops. JH8944 inhibited conidium growth in most of the tested plant pathogens with a dose of $50{\mu}g/ml$, although one isolate of Fusarium oxysporum was inhibited at $5{\mu}g/ml$ of JH8944. Most conidia of Fusarium graminearum were killed within 6 hours of treatment with $50{\mu}g/ml$ of JH8944. Germinating F. graminearum conidia required $238{\mu}g/ml$ of JH8944 for 90% growth inhibition. The peptide did not cause any damage to tissues surrounding maize leaf punctures when tested at a higher concentration of $250{\mu}g/ml$ even after 3 days. Liposomes consisting of phosphatidylglycerol were susceptible to leakage after treatment with 25 and $50{\mu}g/ml$ of JH8944. These experiments suggest this peptide destroys fungal membrane integrity and could be utilized for control of crop fungal pathogens.

Keywords

References

  1. Abdallah, N. A., Shah, D., Abbas, D. and Madkour, M. 2010. Stable integration and expression of a plant defensin in tomato confers resistance to Fusarium wilt. GM Crops 1:344-350. https://doi.org/10.4161/gmcr.1.5.15091
  2. Brown, R., Hazen, E. L. and Mason, A. 1953. Effect of fungicidin (nystatin) in mice injected with lethal mixtures of aureomycin and Candida albicans. Science 117:609-610. https://doi.org/10.1126/science.117.3048.609
  3. Dowd, P. F., Johnson, E. T. and Pinkerton, T. S. 2007. Oral toxicity of $\beta$-N-acetyl hexosaminidase to insects. J. Agric. Food Chem. 55:3421-3428. https://doi.org/10.1021/jf063562w
  4. Dowd, P. F., Johnson, E. T. and Price, N. P. 2012. Enhanced pest resistance of maize leaves expressing monocot crop plant-derived ribosome-inactivating proteins and agglutinin. J. Agric. Food Chem. 60:10768-10775. https://doi.org/10.1021/jf3041337
  5. Duncan, V. M. S. and O'Neil, D. A. 2013. Commercialization of antifungal peptides. Fungal Biol. Rev. 26:156-165. https://doi.org/10.1016/j.fbr.2012.11.001
  6. Errakhi, R., Meimoun, P., Lehner, A., Vidal, G., Briand, J., Corbineau, F., Rona, J. P. and Bouteau, F. 2008. Anion channel activity is necessary to induce ethylene synthesis and programmed cell death in response to oxalic acid. J. Exp. Bot. 59:3121-3129. https://doi.org/10.1093/jxb/ern166
  7. Evans, K. O. 2006. Room-temperature ionic liquid cations act as short-chain surfactants and disintegrate a phospholipid bilayer. Colloids and Surfaces A: Physiochem. Engineer. Aspects 274:11-17. https://doi.org/10.1016/j.colsurfa.2005.10.007
  8. Ghag, S. B., Shekhawat, U. K. and Ganapathi, T. R. 2012. Petunia floral defensins with unique prodomains as novel candidates for development of Fusarium wilt resistance in transgenic banana plants. PLoS ONE 7:e39557. https://doi.org/10.1371/journal.pone.0039557
  9. Koch, A., Khalifa, W., Landen, G., Vilcinskas, A., Kogel, K. H., and Imani, J. 2012. The antimicrobial peptide thanatin reduces fungal infections in Arabidopsis. J. Phytopathol. 160:606-610. https://doi.org/10.1111/j.1439-0434.2012.01946.x
  10. Kumar, S., Bhanjana, G., Sharma, A., Sidhu, M. C. and Dilbaghi, N. 2014. Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydr. Polym. 101:1061-1067. https://doi.org/10.1016/j.carbpol.2013.10.025
  11. Lee, J. and Lee, D. G. 2009. Antifungal properties of the peptide derived from the signal peptide of the HIV-1 regulatory protein. Rev. FEBS Lett. 583:1544-1547. https://doi.org/10.1016/j.febslet.2009.03.063
  12. Leslie, J. F. and Summerell, B. A. 2006. The Fusarium laboratory manual. Blackwell Professional, Ames, Iowa, USA. 388 pp.
  13. Li, Q., Lawrence, C. B., Xing, H. Y., Babbitt, R. A., Bass, W. T., Maiti, I. B. and Everett, N. P. 2001. Enhanced disease resistance conferred by expression of an antimicrobial magainin analog in transgenic tobacco. Planta 212:635-639. https://doi.org/10.1007/s004250000480
  14. Long, S., Wendt, D. J., Bell, S. M., Taylor, T. W., Dewavrin, J. Y. and Vellard, M. C. 2012. A novel method for the large-scale production of PG-CNP37, a C-type natriuretic peptide analogue. J. Biotechnol. 164:196-201.
  15. Makihira, S., Nikawa, H., Shuto, T., Nishimura, M., Mine, Y., Tsuji, K., Okamoto, K., Sakai, Y., Sakai, M., Imari, N., Iwata, S., Takeda, M. and Suehiro, F. 2011. Evaluation of trabecular bone formation in a canine model surrounding a dental implant fixture immobilized with an antimicrobial peptide derived from histatin. J. Mater. Sci. Mater. Med. 22:2765-2772. https://doi.org/10.1007/s10856-011-4440-2
  16. Matsuzaki, K., Yoneyama, S. and Miyajima, K. 1997. Pore formation and translocation of melittin. Biophys. J. 73:831-838. https://doi.org/10.1016/S0006-3495(97)78115-3
  17. Nikawa, H., Fukushima, H., Makihira, S., Hamada, T. and Samaranayake, L. P. 2004. Fungicidal effect of three new synthetic cationic peptides against Candida albicans. Oral Dis. 10:221-248. https://doi.org/10.1111/j.1601-0825.2004.01010.x
  18. Olson, F., Hunt, C. A., Szoka, F. C., Vail, W. J. and Papahadjopoulos, D. 1979. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. BBA - Biomembranes 557:9-23. https://doi.org/10.1016/0005-2736(79)90085-3
  19. Osusky, M., Zhou, G., Osuska, L., Hancock, R. E., Kay, W. W. and Misra, S. 2000. Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat. Biotechnol. 18:1162-1166. https://doi.org/10.1038/81145
  20. Parente, R. A. and Lentz, B. R. 1986. Rate and extent of poly(ethylene glycol)-induced large vesicle fusion monitored by bilayer and internal contents mixing. Biochemistry 25:6678-6688. https://doi.org/10.1021/bi00369a053
  21. Regente, M. C., Giudici, A. M., Villalaín, J. and De la Canal, L. 2005. The cytotoxic properties of a plant lipid transfer protein involve membrane permeabilization of target cells. Lett. Appl. Microbiol. 40:183-189. https://doi.org/10.1111/j.1472-765X.2004.01647.x
  22. Schmale, D. G. and Munkvold, G. P. 2014. Economic impact of mycotoxins. http://www.apsnet.org/edcenter/intropp/topics/Mycotoxins/Pages/EconomicImpact.aspx (accessed December, 2014).
  23. Vasquez, L. E., Guzmán, F., Patarroyo, M. E. and Arango, R. 2009. In vitro evaluation of antimicrobial peptides against Mycosphaerella fijiensis Morelet and their interaction with some chemical fungicides. Rev. Fac. Nal. Agr. Medellín 62:5063-5069.
  24. Wang, X. J., Wang, X. M., Teng, D., Zhang, Y., Mao, R. Y. and Wang, J. H. 2014. Recombinant production of the antimicrobial peptide NZ17074 in Pichia pastoris using SUMO3 as a fusion partner. Lett. Appl. Microbiol. 59:71-78. https://doi.org/10.1111/lam.12246
  25. Wicklow, D. T. and Poling, S. M. 2009. Antimicrobial activity of pyrrocidines from Acremonium zeae against endophytes and pathogens of maize. Phytopathology 99:109-115. https://doi.org/10.1094/PHYTO-99-1-0109
  26. Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415:389-395. https://doi.org/10.1038/415389a
  27. Zeitler, B., Herrera Diaz, A., Dangel, A., Thellmann, M., Meyer, H., Sattler, M. and Lindermayr, C. 2013. De-novo design of antimicrobial peptides for plant protection. PLoS ONE 8:e71687. https://doi.org/10.1371/journal.pone.0071687

Cited by

  1. Structure-based virtual screening of hypothetical inhibitors of the enzyme longiborneol synthase—a potential target to reduce Fusarium head blight disease vol.22, pp.7, 2016, https://doi.org/10.1007/s00894-016-3021-1
  2. Design, synthesis, and biological evaluation of cyclic peptidotriazoles derived from BPC194 as novel agents for plant protection vol.108, pp.3, 2017, https://doi.org/10.1002/bip.23012
  3. A quantitative method for determining relative colonization rates of maize callus by Fusarium graminearum for resistance gene evaluations vol.130, 2016, https://doi.org/10.1016/j.mimet.2016.08.026
  4. Assessment of the antifungal activity of selected biocontrol agents and their secondary metabolites against Fusarium graminearum 2018, https://doi.org/10.1007/s10658-017-1255-0
  5. Tryptophan-Containing Cyclic Decapeptides with Activity against Plant Pathogenic Bacteria vol.22, pp.11, 2017, https://doi.org/10.3390/molecules22111817