DOI QR코드

DOI QR Code

Transfection Property of a New Cholesterol-Based Cationic Lipid Containing Tri-2-Hydroxyethylamine as Gene Delivery Vehicle

  • Kim, Bieong-Kil (School of Life Science and Biotechnology, Kyungpook National University) ;
  • Doh, Kyung-Oh (Department of Physiology, College of Medicine, Yeungnam University) ;
  • Hwang, Guen-Bae (School of Life Science and Biotechnology, Kyungpook National University) ;
  • Seu, Young-Bae (School of Life Science and Biotechnology, Kyungpook National University)
  • Received : 2011.11.07
  • Accepted : 2012.02.07
  • Published : 2012.06.28

Abstract

A novel cholesterol-based cationic lipid containing a tri-2-hydroxyethylamine head group and ether linker (Chol-THEA) was synthesized and examined as a potent gene delivery vehicle. In the preparation of cationic liposome, the addition of DOPE as helper lipid significantly increased the transfection efficiency. To find the optimum transfection efficiency, we screened various weight ratios of DOPE and liposome/DNA (N/P). The best transfection efficiency was found at the Chol-THEA:DOPE weight ratio of 1:1 and N/P weight ratio of 10~15. Most of the plasmid DNA was retarded by this liposome at the optimum N/P weight ratio of 10. The transfection efficiency of Chol-THEA liposome was compared with DOTAP, Lipofectamine, and DMRIE-C using the luciferase assay and GFP expression. Chol-THEA liposome with low toxicity had better or similar potency of gene delivery compared with commercial liposomes in COS-7, Huh-7, and MCF-7 cells. Therefore, Chol-THEA could be a useful non-viral vector for gene delivery.

Keywords

References

  1. Al-Jamal, W. T. and K. Kostarelos. 2007. Construction of nanoscale multicompartment liposomes for combinatory drug delivery. Int. J. Pharm. 331: 182-185. https://doi.org/10.1016/j.ijpharm.2006.11.020
  2. Anwer, K., M. N. Barnes, J. Fewell, D. H. Lewis, and R. D. Alvarez. 2010. Phase-I clinical trial of IL-12 plasmid/lipopolymer complexes for the treatment of recurrent ovarian cancer. Gene Ther. 17: 360-369. https://doi.org/10.1038/gt.2009.159
  3. Bajaj, A., P. Kondaiah, and S. Bhattacharya. 2007. Synthesis and gene transfer activities of novel serum compatible cholesterol-based gemini lipids possessing oxyethylene-type spacers. Bioconjug. Chem. 18: 1537-1546. https://doi.org/10.1021/bc070010q
  4. Farhood, H., N. Serbina, and L. Huang. 1995. The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim. Biophys. Acta 1235: 289-295. https://doi.org/10.1016/0005-2736(95)80016-9
  5. Felgner, J. H., R. Kumar, C. N. Sridhar, C. J. Wheeler, Y. J. Tsai, R. Border, et al. 1994. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J. Biol. Chem. 269: 2550-2561.
  6. Friedmann, T. 1996. Human gene therapy - an immature genie, but certainly out of the bottle. Nat. Med. 2: 144-147. https://doi.org/10.1038/nm0296-144
  7. Gao, H. and K. M. Hui. 2001. Synthesis of a novel series of cationic lipids that can act as efficient gene delivery vehicles through systematic heterocyclic substitution of cholesterol derivatives. Gene Ther. 8: 855-863. https://doi.org/10.1038/sj.gt.3301471
  8. Garinot, M., N. Mignet, C. Largeau, J. Seguin, D. Scherman, and M. Bessodes. 2007. Amphiphilic polyether branched molecules to increase the circulation time of cationic particles. Bioorg. Med. Chem. 15: 3176-3186. https://doi.org/10.1016/j.bmc.2007.02.037
  9. Hafez, I. M., N. Maurer, and P. R. Cullis. 2001. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther. 8: 1188-1196. https://doi.org/10.1038/sj.gt.3301506
  10. Hope, M. J., B. Mui, S. Ansell, and Q. F. Ahkong. 1998. Cationic lipids, phosphatidylethanolamine and the intracellular delivery of polymeric, nucleic acid-based drugs (review). Mol. Membr. Biol. 15: 1-14. https://doi.org/10.3109/09687689809027512
  11. Hu, Y., K. Li, L. Wang, S. Yin, Z. Zhang, and Y. Zhang. 2010. Pegylated immuno-lipopolyplexes: A novel non-viral gene delivery system for liver cancer therapy. J. Control. Release 144: 75-81. https://doi.org/10.1016/j.jconrel.2010.02.005
  12. Karmali, P. P. and A. Chaudhuri. 2007. Cationic liposomes as non-viral carriers of gene medicines: Resolved issues, open questions, and future promises. Med. Res. Rev. 27: 696-722. https://doi.org/10.1002/med.20090
  13. Kawase, Y., D. Ladage, and R. J. Hajjar. 2011. Rescuing the failing heart by targeted gene transfer. J. Am. Coll. Cardiol. 57: 1169-1180. https://doi.org/10.1016/j.jacc.2010.11.023
  14. Kim, B. K., Y. U. Bae, K. O. Doh, G. B. Hwang, S. H. Lee, H. Kang, and Y. B. Seu. 2011. The synthesis of cholesterol-based cationic lipids with trimethylamine head and the effect of spacer structures on transfection efficiency. Bioorg. Med. Chem. Lett. 21: 3734-3737. https://doi.org/10.1016/j.bmcl.2011.04.071
  15. Kim, B. K., K. O. Doh, Y. U. Bae, and Y. B. Seu. 2011. Synthesis and optimization of cholesterol-based diquaternary ammonium Gemini Surfactant (Chol-GS) as a new gene delivery vector. J. Microbiol. Biotechnol. 21: 93-99. https://doi.org/10.4014/jmb.1008.08012
  16. Kim, B. K., K. O. Doh, J. H. Nam, H. Kang, J. G. Park, I. J. Moon, and Y. B. Seu. 2009. Synthesis of novel cholesterol-based cationic lipids for gene delivery. Bioorg. Med. Chem. Lett. 19: 2986-2989. https://doi.org/10.1016/j.bmcl.2009.04.036
  17. Kumar, V. V., R. S. Singh, and A. Chaudhuri. 2003. Cationic transfection lipids in gene therapy: Successes, set-backs, challenges and promises. Curr. Med. Chem. 10: 1297-1306. https://doi.org/10.2174/0929867033457458
  18. Litzinger, D. C., J. M. Brown, I. Wala, S. A. Kaufman, G. Y. Van, C. L. Farrell, and D. Collins. 1996. Fate of cationic liposomes and their complex with oligonucleotide in vivo. Biochim. Biophys. Acta 1281: 139-149. https://doi.org/10.1016/0005-2736(95)00268-5
  19. Liu, Y., L. C. Mounkes, H. D. Liggitt, C. S. Brown, I. Solodin, T. D. Heath, and R. J. Debs. 1997. Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat. Biotechnol. 15: 167-173. https://doi.org/10.1038/nbt0297-167
  20. Lv, H., S. Zhang, B. Wang, S. Cui, and J. Yan. 2006. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 114: 100-109. https://doi.org/10.1016/j.jconrel.2006.04.014
  21. MacDonald, R. C., V. A. Rakhmanova, K. L. Choi, H. S. Rosenzweig, and M. K. Lahiri. 1999. O-Ethylphosphatidylcholine: A metabolizable cationic phospholipid which is a serum-compatible DNA transfection agent. J. Pharm. Sci. 88: 896-904. https://doi.org/10.1021/js990006q
  22. Maestrelli, F., M. L. Gonzalez-Rodriguez, A. M. Rabasco, and P. Mura. 2006. Effect of preparation technique on the properties of liposomes encapsulating ketoprofen-cyclodextrin complexes aimed for transdermal delivery. Int. J. Pharm. 312: 53-60. https://doi.org/10.1016/j.ijpharm.2005.12.047
  23. Mahidhar, Y. V., M. Rajesh, and A. Chaudhuri. 2004. Spacer-arm modulated gene delivery efficacy of novel cationic glycolipids: Design, synthesis, and in vitro transfection biology. J. Med. Chem. 47: 3938-3948. https://doi.org/10.1021/jm030464i
  24. Moon, I. J., H. Kang, Y. B. Seu, B. C. Chang, D. K. Song, and J. G. Park. 2007. Marked transfection enhancement by the DPL (DNA/peptide/lipid) complex. Int. J. Mol. Med. 20: 429-437.
  25. Piron, J., K. L. Quang, F. Briec, J. C. Amirault, A. L. Leoni, L. Desigaux, et al. 2008. Biological pacemaker engineered by nonviral gene transfer in a mouse model of complete atrioventricular block. Mol. Ther. 16: 1937-1943. https://doi.org/10.1038/mt.2008.209
  26. Singh, R. S., K. Mukherjee, R. Banerjee, A. Chaudhuri, S. K. Hait, S. P. Moulik, et al. 2002. Anchor dependency for non-glycerol based cationic lipofectins: Mixed bag of regular and anomalous transfection profiles. Chemistry 8: 900-909. https://doi.org/10.1002/1521-3765(20020215)8:4<900::AID-CHEM900>3.0.CO;2-X
  27. Tagami, T., J. M. Barichello, H. Kikuchi, T. Ishida, and H. Kiwada. 2007. The gene-silencing effect of siRNA in cationic lipoplexes is enhanced by incorporating pDNA in the complex. Int. J. Pharm. 333: 62-69. https://doi.org/10.1016/j.ijpharm.2006.09.057
  28. Tandia, B. M., M. Vandenbranden, R. Wattiez, Z. Lakhdar, J. M. Ruysschaert, and A. Elouahabi. 2003. Identification of human plasma proteins that bind to cationic lipid/DNA complex and analysis of their effects on transfection efficiency: Implications for intravenous gene transfer. Mol. Ther. 8: 264-273. https://doi.org/10.1016/S1525-0016(03)00150-3
  29. Thompson, B., N. Mignet, H. Hofland, D. Lamons, J. Seguin, C. Nicolazzi, et al. 2005. Neutral postgrafted colloidal particles for gene delivery. Bioconjug. Chem. 16: 608-614. https://doi.org/10.1021/bc040244z
  30. Venkata Srilakshmi, G., J. Sen, A. Chaudhuri, Y. Ramadas, and N. Madhusudhana Rao. 2002. Anchor-dependent lipofection with non-glycerol based cytofectins containing single 2-hydroxyethyl head groups. Biochim. Biophys. Acta 1559: 87-95. https://doi.org/10.1016/S0005-2736(01)00442-4
  31. Vijayanathan, V., T. Thomas, and T. J. Thomas. 2002. DNA nanoparticles and development of DNA delivery vehicles for gene therapy. Biochemistry 41: 14085-14094. https://doi.org/10.1021/bi0203987
  32. Wheeler, C. J., P. L. Felgner, Y. J. Tsai, J. Marshall, L. Sukhu, S. G. Doh, et al. 1996. A novel cationic lipid greatly enhances plasmid DNA delivery and expression in mouse lung. Proc. Natl. Acad. Sci. USA 93: 11454-11459. https://doi.org/10.1073/pnas.93.21.11454
  33. Yang, J. P. and L. Huang. 1997. Overcoming the inhibitory effect of serum on lipofection by increasing the charge ratio of cationic liposome to DNA. Gene Ther. 4: 950-960. https://doi.org/10.1038/sj.gt.3300485
  34. Zelphati, O., L. S. Uyechi, L. G. Barron, and F. C. Szoka Jr. 1998. Effect of serum components on the physico-chemical properties of cationic lipid/oligonucleotide complexes and on their interactions with cells. Biochim. Biophys. Acta 1390: 119-133. https://doi.org/10.1016/S0005-2760(97)00169-0

Cited by

  1. Efficient Delivery of Plasmid DNA Using Cholesterol-Based Cationic Lipids Containing Polyamines and Ether Linkages vol.15, pp.5, 2014, https://doi.org/10.3390/ijms15057293
  2. Deciphering the Functional Composition of Fusogenic Liposomes vol.19, pp.2, 2018, https://doi.org/10.3390/ijms19020346
  3. Enhancement of Liposomal Plasmid DNA and siRNA Delivery by Itraconazole through Intracellular Cholesterol Accumulation vol.37, pp.7, 2012, https://doi.org/10.1007/s11095-020-02846-4