DOI QR코드

DOI QR Code

Inhibition of Klebsiella pneumoniae ATCC 13883 Cells by Hexane Extract of Halimeda discoidea (Decaisne) and the Identification of Its Potential Bioactive Compounds

  • Supardy, Nor Afifah (Industrial Biotechnology Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia) ;
  • Ibrahim, Darah (Industrial Biotechnology Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia) ;
  • Sulaiman, Shaida Fariza (Phytochemical Laboratory, School of Biological Sciences, Universiti Sains Malaysia) ;
  • Zakaria, Nurul Aili (Industrial Biotechnology Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia)
  • Received : 2011.11.21
  • Accepted : 2012.02.14
  • Published : 2012.06.28

Abstract

The inhibitory effect of the Klebsiella pneumoniae ATCC 13883 strain caused by the hexane extract of Halimeda discoidea (Nor Afifah et al., 2010) was further evaluated by means of the microscopy view and its growth curves. The morphological changes of the K. pneumoniae ATCC 13883 cells were observed under the scanning electron microscope (SEM) and transmission electron microscope (TEM) after they were treated at minimum inhibitory concentration (MIC; 0.50 mg/ml) (Nor Afifah et al., 2010) for 12, 24, and 36 h. The results showed the severity of the morphological deteriorations experienced by the treated cells. The killing curve assay was performed for 48 h at three different extract concentrations (1/2 MIC, MIC, and 2 MIC). An increase in the extract concentration of up to 2 MIC value did significantly reduce the number of cells by approximately 1.9 $log_{10}$, as compared with the control. Identification of the potential compounds of the extract responsible for the antibacterial activity was carried out through the gas chromatography-mass spectrum (GC-MS) analysis of the active subfraction, and the compound E-15-heptadecenal was identified and suggested as the most potential antibacterial compound of this extract. The subsequent cellular degenerations showed by the data might well explain the inhibitory mechanisms of the suggested antibacterial compound. All of these inhibitory effects have further proven the presence of an antibacterial compound within H. discoidea that can inhibit the growth of K. pneumoniae ATCC 13883.

Keywords

References

  1. Amako, K., Y. Meno, and A. Takade. 1988. Fine structures of the capsules of Klebsiella pneumoniae and Escherechia coli K1. J. Bacteriol. 170: 4960-4962.
  2. Anderson, R., J. Brodie, E. Onsøyen, A. T. Critchley, K. Boonprab, K. Matsui, et al. 2007. Formation of aldehyde flavor (n-hexanal, 3-nonenal and 2-nonenal) in the brown alga, Laminaria angustata, pp. 183-186. In R. Anderson, J. Brodie, E. Onsoyen, and A. T. Critchley (eds.). Eighteenth International Seaweed Symposium. Springer, Netherlands, Norway.
  3. Babu, B. and J.-T. Wu. 2010. Production of phthlate esters by nuisance freshwater algae and cyanobacteria. Sci. Total Environ. 408: 4969-4975. https://doi.org/10.1016/j.scitotenv.2010.07.032
  4. Branger, C., B. Bruneau, A. L. Lesimple, P. J. M. Bouvet, P. Berry, J. Sevali-Garci, and N. Lambert-Zechovsky. 1997. Epidemiological typing of extended-spectrum [beta]-lactamase-producing Klebsiella pneumoniae isolates responsible for five outbreaks in a university hospital. J. Hosp. Infect. 36: 23-36. https://doi.org/10.1016/S0195-6701(97)90088-8
  5. Chakraborty, K., A. P. Lipton, R. Paul Raj, and K. K. Vijayan. 2010. Antibacterial labdane diterpenoids of Ulva fasciata Delile from southwestern coast of the Indian Peninsula. Food Chem. 119: 1399-1408. https://doi.org/10.1016/j.foodchem.2009.09.019
  6. Chang, W.-N., C.-H. Lu, C.-R. Huang, Y.-C. Chuang, N.-W. Tsai, C.-C. Chang, et al. 2010. Clinical characteristics of postneurosurgical Klebsiella pneumoniae meningitis in adults and a clinical comparison to the spontaneous form in a Taiwanese population. J. Clin. Neurosci. 17: 334-338. https://doi.org/10.1016/j.jocn.2009.06.019
  7. Chan, S. C., W. L. Yau, W. Wang, D. K. Smith, F.-S. Sheu, and H. M. Chen. 1998. Microscopic observations of the different morphological changes caused by anti-bacterial peptides on Klebsiella pneumoniae and HL-60 leukemia cells. J. Pept. Sci. 4: 413-425. https://doi.org/10.1002/(SICI)1099-1387(199811)4:7<413::AID-PSC160>3.0.CO;2-W
  8. Cloete, T. E. 2003. Resistance mechanisms of bacteria to antimicrobial compounds. Int. Biodeterior. Biodegrad. 51: 277-282. https://doi.org/10.1016/S0964-8305(03)00042-8
  9. Derakhshan, S., M. Sattari, and M. Bigdeli. 2008. Effects of subinhibitory concentrations of cumin (Cuminum cyminum L.) seed essential oil and alcoholic extract on the morphology, capsule expression and urease activity of Klebsiella pneumoniae. Int. J. Antimicrob. Agents 32: 432-436. https://doi.org/10.1016/j.ijantimicag.2008.05.009
  10. Dykstra, M. J. 1992. Biological Electron Microscopy, Theory, Techniques and Troubleshooting. Plenum Press, New York.
  11. Feng, S., W. Zeng, F. Luo, J. Zhao, Z. Yang, and Q. Sun. 2010. Antibacterial activity of organic acids in aqueous extracts from pine needles (Pinus massoniana Lamb.). Food Sci. Biotechnol. 19: 35-41. https://doi.org/10.1007/s10068-010-0005-2
  12. Fenical, W. and V. J. Paul. 1984. Antimicrobial and cytotoxic terpenoids from tropical green algae of the family Udoteaceae. Hydrobiologia 116: 135-170.
  13. Fujimura, T. and T. Kajiwara. 1990. Production of bioflavor by regeneration from protoplasts of Ulva pertusa (Ulvales, Chlorophyta). Hydrobiologia 204-205: 143-149. https://doi.org/10.1007/BF00040226
  14. Fusetani, N. 2000. Drugs From The Sea. Karger, Switzerland.
  15. Ganti, V. S., K. H. Kim, H. D. Bhattarai, and H. W. Shin. 2006. Isolation and characterisation of some antifouling agents from the brown alga Sargassum confusum. J. Asian Nat. Prod. Res. 8: 309-315. https://doi.org/10.1080/10286020500034980
  16. Gao, F. H., T. Abee, and W. N. Konings. 1991. Mechanism of action of the peptide antibiotic nisin in liposomes and cytochrome c oxidase-containing proteoliposomes. Appl. Environ. Microbiol. 57: 2164-2170.
  17. Glauert, A. M. 1980. Fixation, dehydration and embedding of biological specimens. In A. M. Glauert (ed.). Practical Methods in Electron Microscopy. North-Holland, Amsterdam.
  18. Goñi, I., L. Valdivieso, and A. Garcia-Alonso. 2000. Nori seaweed consumption modifies glycemic response in healthy volunteers. Nutr. Res. 20: 1367-1375. https://doi.org/10.1016/S0271-5317(00)80018-4
  19. Helander, I. M., E. L. Nurmiaho-Lassila, R. Ahvenainen, J. Rhoades, and S. Roller. 2001. Chitosan disrupts the barrier properties of the outer membrane of Gram negative bacteria. Int. J. Food Microbiol. 71: 235-244. https://doi.org/10.1016/S0168-1605(01)00609-2
  20. Hellio, C., D. De La Broise, L. Dufossé, Y. Le Gal, and N. Bourgougnon. 2001. Inhibition of marine bacteria by extracts of macroalgae: Potential use for environmentally friendly antifouling paints. Mar. Environ. Res. 52: 231-247. https://doi.org/10.1016/S0141-1136(01)00092-7
  21. Ismail, A. 1995. Chlorophyta, pp. 171-247. In A. Ismail (ed.). Rumpai Laut Malaysia. Dewan Bahasa dan Pustaka, Kuala Lumpur.
  22. Kajiwara, T., K. Matsui, and Y. Akakabe. 1996. Biogeneration of volatile compounds via oxylipins in edible seaweeds, pp. 146-166. In G. R. Takeoka, R. Teranishi, P. J. Williams, and A. Kobayashi (eds.). Biotechnology for Improved Foods and Flavours. American Chemical Society, Washington DC.
  23. Kajiwara, T., K. Matsui, A. Yoshihiko, M. Takushi, and C. Arai. 2006. Antimicrobial browning-inhibitory effect of flavor compounds in seaweeds. J. Appl. Phycol. 18: 413-422. https://doi.org/10.1007/s10811-006-9046-6
  24. Kasi, P. D., S. Natarajan, K. Periyanaina, and K. P. Shanmugaiahthevar. 2008. Bioprotective properties of seaweeds: In vitro evaluation of antioxidant activity and antimicrobial activity against food borne bacteria in relation to polyphenolic content. BMC. Complement Altern. Med. DOI: 10.1186/1472-6882-8-38.
  25. Lane, A. L., L. Mular, E. J. Drenkard, T. L. Shearer, S. Engel, S. Fredericq, et al. 2010. Ecological leads for natural product discovery: Novel sesquiterpene hydroquinones from the red macroalga Peyssonnelia sp. Tetrahedron 66: 455-461. https://doi.org/10.1016/j.tet.2009.11.042
  26. Lee, C.-H., H.-S. Leu, T.-S. Wu, L.-H. Su, and J. W. Liu. 2005. Risk factors for spontaneous rupture of liver abscess caused by Klebsiella pneumoniae. Diagn. Microbiol. Infect. Dis. 52: 79-84. https://doi.org/10.1016/j.diagmicrobio.2004.12.016
  27. Lima-Filho, J. V. M., A. F. F. U. Carvalho, S. M. Freitas, and V. M. M. Melo. 2002. Antibacterial activity of extracts of six macroalgae from the northeastern Brazilian coast. Braz. J. Microbiol. 33: 311-314.
  28. Linares, L., C. Cervera, I. Hoyo, G. Sanclemente, F. Marco, F. Cofan, et al. 2010. Klebsiella pneumoniae infection in solid organ transplant recipients: Epidemiology and antibiotic resistance. Transplant. Proc. 42: 2941-2943. https://doi.org/10.1016/j.transproceed.2010.07.080
  29. Lu, C. H., W. N. Chang, Y. C. Chuang, and H. W. Chang. 1998. The prognostic factors of adult Gram-negative bacillary meningitis. J. Hosp. Infect. 40: 27-34.
  30. Maltezou, H. C., P. Giakkoupi, A. Maragos, M. Bolikas, V. Raftopoulos, H. Papahatzak, et al. 2009. Outbreak of infections due to KPC 2-producing Klebsiella pneumoniae in a hospital in Crete (Greece). J. Infect. 58: 213-219. https://doi.org/10.1016/j.jinf.2009.01.010
  31. Manzo, E., M. L. Ciavatta, S. Bakkas, G. Villani, M. Varcamonti, A. Zanfardino, and M. Gavagnin. 2009. Diterpene content of the alga Dictyota ciliolata from a Moroccan lagoon. Phytochem. Lett. 2: 211-215. https://doi.org/10.1016/j.phytol.2009.08.003
  32. McDowell, E. M. and B. F. Trump. 1976. Histologic fixatives suitable for diagnostic light and electron microscopy. Arch. Pathol. Lab. Med. 100: 405-414.
  33. Morris, G. L. and J. L. Yates. 1956. Respiratory infections due to Klebsiella pneumoniae. Dis. Chest. 30: 298-305. https://doi.org/10.1378/chest.30.3.298
  34. Namikoshi, M., T. Fujiwara, T. Nishikawa, and K. Ukai. 2006. Natural abundance $^{14}C$ content of dibuthyl phthlate (DBP) from three marine algae. Mar. Drugs 4: 290-297. https://doi.org/10.3390/md404290
  35. National Committee for Clinical Laboratory Standards. 1999. Methods for determining bactericidal activity of antimicrobial agent; Approved guideline. NCCLS Document M62A C.F.R. Wayne PA.
  36. Nation, J. L. 1983. A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron microscopy. Stain Technol. 58: 347-351.
  37. Nor Afifah, S., I. Darah, S. Shaida Fariza, M. K. Mohd Jain Noordin, and Z. Nurul Aili. 2010. Antimicrobial activity of various extracts of a tropical Chlorophyta macroalgae, Halimeda discoidea. J. Appl. Sci. 10: 3007-3013. https://doi.org/10.3923/jas.2010.3007.3013
  38. Palic, R., G. Stojanovic, S. Alagic, M. Nikolic, and Z. Lepojevic. 2002. Chemical composition and antimicrobial activity of the essential oil and $CO_2$ extracts of the oriental tobacco, Prilep. Flavour Fragr. J. 17: 323-326. https://doi.org/10.1002/ffj.1084
  39. Pastagia, M. and V. Arumugam. 2008. Klebsiella pneumoniae liver abscesses in a public hospital in Queens, New York. Travel Med. Infect. Dis. 6: 228-233. https://doi.org/10.1016/j.tmaid.2008.02.005
  40. Paul, V. J. and K. L. Van Alstyne. 1988. Chemical defense and chemical variation in some tropical Pacific species of Halimeda (Halimedaceae; Chlorophyta). Coral Reef 6: 263-269. https://doi.org/10.1007/BF00302022
  41. Phang, S. M. 2006. Seaweed resources in Malaysia: Current status and future prospects. Aquat. Ecosyst. Health Manag. 9: 185-202. https://doi.org/10.1080/14634980600710576
  42. Pomponi, S. A. 2001. The oceans and human health: The discovery and development of marine-derived drugs. Oceanography 14: 78-87.
  43. Prost, I., S. Dhondt, G. Rothe, J. Vicente, M. J. Rodriguez, N. Kift, et al. 2005. Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol. 139: 1902-1913. https://doi.org/10.1104/pp.105.066274
  44. Puglisi, M. P., S. Engel, P. R. Jensen, and W. Fenical. 2007. Antimicrobial activities of extracts from Indo-Pacific marine plants against marine pathogens and saprophytes. Mar. Biol. 150: 531-540.
  45. Rajeshwari, H., S. Nagveni, A. Oli, D. Parashar, and K. R. Chandrakanth. 2009. Morphological changes of Klebsiella pneumoniae in response to cefotaxime: A scanning electron microscope study. World J. Microbiol. Biotechnol. 25: 2263-2266. https://doi.org/10.1007/s11274-009-0126-z
  46. Riendeau, D. and E. Meighen. 1985. Enzymatic reduction of fatty acids and acyl CoAs to long chain aldehydes and alcohols. Cell. Mol. Life Sci. 41: 707-713. https://doi.org/10.1007/BF02012564
  47. Robertson, J. C. 1973. The significance of Klebsiella in the respiratory tract of hospital patients. Br. J. Dis. Chest 67: 227-237. https://doi.org/10.1016/0007-0971(73)90058-2
  48. Sastry, V. M. V. S. and G. R. K. Rao. 1995. Dioctyl phthalate, and antibacterial compound from the marine brown alga Sargassum wightii. J. Appl. Phycol. 7: 185-186. https://doi.org/10.1007/BF00693066
  49. Satta, G., P. Canepari, G. Botta, and R. Fontana. 1980. Control of cell septation by lateral wall extension in pH-conditional morphology mutant of Klebsiella pneumoniae. J. Bacteriol. 142: 43-51.
  50. Satta, G., G. Cornaglia, A. Mazzariol, G. Golini, S. Valisena, and R. Fontana. 1995. Target for bacteriostatic and bactericidal activities of ${\beta}$-lactam antibiotics against Escherichia coli resides in different penicillin-binding proteins. Antimicrob. Agents Chemother. 39: 812-818. https://doi.org/10.1128/AAC.39.4.812
  51. Scheuer, P. J. 1973. Chemistry of Marine Natural Products. Academic Press Inc., New York.
  52. Shan, B.-E., Y. Yoshida, E. Kuroda, and U. Yamashita. 1999. Brief communication immunomodulating activity of seaweed extract on human lymphocytes in vitro. Int. J. Immunopharmacol. 21: 59-70. https://doi.org/10.1016/S0192-0561(98)00063-0
  53. Spratt, B. G. 1975. Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc. Natl. Acad. Sci. USA 72: 2999-3003. https://doi.org/10.1073/pnas.72.8.2999
  54. Srinivasan, G. V., P. Sharanappa, N. K. Leela, C. T. Sadashiva, and K. K. Vijayan. 2009. Chemical composition and antimicrobial activity of the essential oil of Leea indica (Burm. f.) Merr. flowers. Nat. Prod. Rad. 8: 488-493.
  55. Yoshie, Y., W. Wang, Y.-P. Hsieh, and T. Suzuki. 2002. Compositional difference of phenolic compounds between two seaweeds, Halimeda spp. J. Tokyo Univ. Fish. 88: 21-24.

Cited by

  1. Antimicrobial Activity of Crude Methanolic Extract from Phyllanthus niruri vol.8, pp.4, 2013, https://doi.org/10.1177/1934578x1300800422
  2. Rosmarinic Acid and Its Methyl Ester as Antimicrobial Components of the Hydromethanolic Extract of Hyptis atrorubens Poit. (Lamiaceae) vol.2013, pp.None, 2013, https://doi.org/10.1155/2013/604536
  3. Antibacterial Activity of Ethanolic Extract of Syzygium polyanthum L. (Salam) Leaves against Foodborne Pathogens and Application as Food Sanitizer vol.2017, pp.None, 2012, https://doi.org/10.1155/2017/9024246
  4. Mitigation of free radicals and carbohydrate-linked enzymes by extracts and partitioned fractions of Elephantorrhiza elephantina (Burch.) Skeels root vol.5, pp.1, 2021, https://doi.org/10.4102/jomped.v5i1.109
  5. Phytochemical Profile of Rock Jasmine (Androsace foliosa Duby ex Decne) by Using HPLC and GC-MS Analyses vol.46, pp.6, 2021, https://doi.org/10.1007/s13369-020-05241-8