• Title/Summary/Keyword: Cathodic

Search Result 752, Processing Time 0.023 seconds

Engineering Technology Far-end Telecontrol Cathodic Protection on the Structure of Jetty Bridge Cap Beams

  • Liu, Yi-Hsiung;Lim, Pau-Yee;Shih, Chien-Chis
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.47-52
    • /
    • 2003
  • 23 cap beams on the 1 Km length jetty bridge in Shin-da power plant (Taipower co., Taiwan) utilize far-end telecontrol cathodic protection technology which is the first case ever used in Taiwan. The system comprises cathodic protection system and te1econtrol monitoring system. The control and monitoring such as protection current adjustment, protection potential and depolarization measurement of the 23 cap beams can be adjusted through system telecontrol operations. Thereby allows monitoring and control of the 23 anode zones in a convenient and cost effective way. This system is at present still in its best running condition since Sept. 1997 when it was completed. All the 23 cap beams can achieve the 100 mV depolarization potential criteria of protection. It meet the specifications of reinforced concrete cathodic protection standard and proved to be very excellent.

Characteristics of Cathodic Protection with ICCP Anode in Reinforced Concrete (철근콘크리트용 ICCP 양극의 종류별 음극방식 특성)

  • Jeong, Jin-A
    • Corrosion Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.112-119
    • /
    • 2012
  • This paper presents the results of a study of the effectiveness of cathodic protection with insoluble ICCP anode in reinforced concrete structures. Experimental tests were carried out on reinforced concrete specimens with 3 different commercial anodes for ICCP system in order to compare the effectiveness of cathodic protection. Results have shown that the kinds of anode for ICCP is irrelevant to the effectiveness of cathodic protection, In case of ICCP, the performance of cathodic protection has no relationship to the kinds of anode especially in concrete specimens with sea water condition. It has been found slightly more effective at Ti-Rod anode in fresh water condition and Ti-Mesh anode in atmospheric condition.

Field Testing Center Design of Cathodic Protection System for Maritime Metallic Structures (해양구조물 전기방식시스템 현장적용실험장 설계)

  • Ha, Tae-Hyeon;Bae, Jeong-Hyo;Lee, Hyeon-Gu;Ha, Yun-Cheol;Kim, Dae-Gyeong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.633-636
    • /
    • 2003
  • Most of maritime metallic structures are adopted a CP(Cathodic Protection) System for protection of corrosion in advanced country. So, we had been developed a remote corrosion monitoring control system. And we want to know the characteristics of efficiency, reliability, durability and so on. On the view point of it, we have to test in real field. in terms of design, cathodic protection systems, corrosion monitoring systems and optimal corrosion control systems compare to general commercial products. So, these systems have being studied to improve their capability. In this paper, the result of field testing center design of intelligent cathodic protection system including anodes, a real-time wireless remote corrosion monitoring and corrosion control system are described in naval ports.

  • PDF

Study on the Characteristics of Crevice Corrosion Prevention of SS 400 in Marine Environment (해양환경 중에서 SS400강재의 간극부식방지 특성에 관한 연구)

  • 임우조;정기철;구영필;윤병두
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.152-157
    • /
    • 2001
  • This paper was studied on the characteristics of crevice corrosion prevention of SS 400 in marine environment. In NaCl solution, polarization behavior under the crevice corrosion was investigated. And Weight loss rate of SS 400 applied cathodic protection and non cathodic protection was measured according to the NaCl concentration. The main results obtained are as follows : The weight loss rate of Al-alloy galvanic anode was increased as the concentration of NaCl solution increased by 3.5% but the concentration increased over 3.5%, that of Al-alloy galvanic anode become decreased. The protective potential of SS 400 used Al-alloy galvanic anode becomes more cathodic polarization with increasing concentration of NaCl solution. Effects of oxygen on the weight loss rate of Al-alloy sacrificial anode for cathodic protection as the concentration of 3.5% NaCl solution become sensitive than that of 0% NaCl solution.

  • PDF

Study on the Cathodic Protectioin Behavior of Hot Water Boiler by Mg-Alloy Galvanic Anode (Mg 합금유전양긍에 의한 온수보일러의 음극방식거동에 관한 연구)

  • 정기철
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.115-121
    • /
    • 2000
  • As the development of industry water quality of river is going to bad because of waste water of an industrial complex and general home agricultural chemicals exhaust of $SO_3$ and CO gas acid rain and so on. Corrosion damage of boiler factory equipment and so forth occur quickly due to using of the polluted water resulting in increasing leak accident. Especially working life of hot water boiler using the polluted water becomes more short and energy loss increases. The cathodic protection method is the most economical and reliable one to prevent corrosion damage of steel structures. Mg-base alloys galvanic anode protection of cathodic protection method is suitable for than application of hot water boiler using water with high specific resistance such as tap water. This paper is studied on the cathodic protection characteristics of how water boiler. In tap water and 0.001mol/$\ell$ NaCl solution the characteristics of anodic polarization of Mg-base alloys galvanic anode and tube material is investigated the measurement of cathodic protection potential according to the time elaspsed is carried out.

  • PDF

Quantitative estimation of reversibility of the discharge process undergone by nickel hydroxide film cathodically deposited on pure nickel as a positive supercapacitor electrode using cyclic voltammetry and potential drop method

  • Pyun Su-Il;Moon Sung-Mo
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.8-13
    • /
    • 1998
  • This work presents the way how to evaluate the degree of reversibility of the discharging process undergone by the nickel hydroxide film cathodically deposited on pure nickel as a positive electrode for electrochemical capacitor using the combined cyclic voltammetry and potential drop method, supplemented by galvanostatic discharge and open-circuit potential transient methods. The time interval necessary just to establish the current reversal of anodic to cathodic direction from the moment just after applying the potential inversion of anodic to cathodic direction, was obtained on cyclic voltammogram. The cathodic charge density passed upon dropping the applied potential, was calculated on potentiostatic current density-time curve. Both the time interval and the cathodic charge density in magnitude can be regarded as being measures of the degree of reversibility of the discharging process undergone by the positive active material for supercapacitor, i.e. , the longer the time interval is, the lower is the degree of reversibility and the greater the cathodic charge density is, the higher is the degree of reversibility. From the applied potential dependences of the time interval and cathodic charge density, discharge at $0.42 V_{SCE}$ was determined to be the most reversible.

Methods of Improving Operational Reliability of Oil Well Casing

  • Sergey A. Dolgikh;Irek I. Mukhamatdinov
    • Corrosion Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Oil well casing leak is caused by contact of casing outer surface with formation electrolyte. It is usually associated with an aquifer with a high salt content or absence of a cement ring behind the casing. The only way to reduce external casing corrosion is through cathodic protection. Through cathodic polarization of casing structure, electron content in crystal lattice and electron density will increase, leading to a potential shift towards the cathodic region. At Tatneft enterprises, cathodic protection is carried out according to cluster and individual schemes. The main criterion for cathodic protection is the size of protective current. For a casing, the protective current is considered sufficient if measurements with a two-contact probe show that the electric current directed to the casing has eliminated all anode sites. To determine the value of required protective current, all methods are considered in this work. In addition, an analysis of all methods used to determine the minimum protective current of the casing is provided. Results show that the method of measuring potential drop along casing is one of the most reliable methods for determining the value of protective current.

A study on the technology and application of cathodic protection to reinforced concrete (철근콘크리트의 방식기술 및 음극방식의 적용에 관한 고찰)

  • Jeong, Jin-A;Ha, Ji-Myung;Oh, Se-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.599-604
    • /
    • 2016
  • Cathodic protection was first introduced as a technology for preventing the corrosion of metals in seawater and underground environments in the early 19th century, eventually leading to the introduction of cathodic protection to the reinforced concrete technology sector in the 1970s. In the 1990s, it was demonstrated that the effectiveness of corrosion protection had increased through a number of developments and studies. Recently, cathodic protection was applied to some reinforced concrete structures and has gradually expanded in scope in South Korea. Technical expertise is necessary to understand the underlying electrochemical principles and also because cathodic protection is important for normal physical maintenance. Therefore, in this study, we introduce the technical details and examples of applications of the cathodic protection of reinforced concrete, including the basic theory, principles, and other criteria.

Study on the Influence of Stray current Between Sacrificial Anode Cathodic Protection and Impressed Current Cathodic Protection in Marine Environment

  • Jeong, Jin-A;Kim, Ki-Joon
    • Corrosion Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.77-81
    • /
    • 2012
  • Cathodic protection(CP) is widely used as a means of protecting corrosion for not only marine structures like ship hulls and offshore drilling facilities, but also underground structures like buried pipelines and oil storage tanks. The principle of CP is that the anodic dissolution of metal can be protected by supplying electrons to the cathode metal. When unprotected structures are nearby to CP systems, interference problems between unprotected and protected structures may be happened. The stray current interference can accelerate the corrosion of nearby structures. So far many efforts have been made to reduce the interference in the electric railway systems adjacent to the underground metal structures like buried pipelines and gas/oil tanks. During recent few decades the protection technologies against stray current induced corrosion have been significantly improved and a number of techniques have been developed. However, there is very limited information an marine environments. Some complex harbor structures are protected by two cathodic protection systems, i.e. sacrificial anode cathodic protection(SACP) and impressed current cathodic protection(ICCP). In this case, when the protection current from sacrificial anodes returns to the cathode through electrolyte, it passes through nearby other low resistance metal structures. In many cases the stray current of ICCP systems influences the function of SACP. In this study, the risk of stray current from the SACP system to adjacent reinforced concrete structures has been verified through laboratory experiments. Concrete and steel pile structures modeled a part of bridge have been investigated in terms of CP potential and current between the two. The variation of stray current according to the magnitude of ICCP/SACP has been studied to mitigate it and to suggest the proper protection criteria.

Relationship between the Cathodic Protection of Pipe Buried in Soil and Environmental Factors (토양 매설 배관의 음극방식과 환경인자 간의 상관관계)

  • Choi, S.H.;Won, S.Y.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.372-380
    • /
    • 2022
  • The external corrosion control of buried pipes can be achieved by a combination of coatings and cathodic protection to maximize effectiveness. One of the factors affecting cathodic protection is the environmental soil conditions. Because soil is a kind of electrolyte, the environmental conditions of soil may be changed by the atmospheric environment. Therefore, in this study, changes in environmental soil factors by atmospheric environmental factors were monitored. In cathodic protection, on-potential and off-potential were measured from December 2021 to July 2022. The effects of external environmental factors and soil environmental factors on cathodic protection were analyzed. Changes in outdoor temperature affected soil temperature, and soil conductivity had a proportional relationship with soil humidity, but outdoor humidity and precipitation did not significantly affect humidity and conductivity of the soil. In contrast, in cathodic protection, the on-potential was affected by temperature, humidity, the conductivity of the soil, and the anode used, but the off-potential was little affected by these factors.