DOI QR코드

DOI QR Code

A study on the technology and application of cathodic protection to reinforced concrete

철근콘크리트의 방식기술 및 음극방식의 적용에 관한 고찰

  • Jeong, Jin-A (Department of Ship Operation, Korea Maritime and Ocean University) ;
  • Ha, Ji-Myung (Conclinic.ltd.) ;
  • Oh, Se-Jin (Department of Ship Operation, Korea Maritime and Ocean University)
  • Received : 2016.05.10
  • Accepted : 2016.07.25
  • Published : 2016.09.30

Abstract

Cathodic protection was first introduced as a technology for preventing the corrosion of metals in seawater and underground environments in the early 19th century, eventually leading to the introduction of cathodic protection to the reinforced concrete technology sector in the 1970s. In the 1990s, it was demonstrated that the effectiveness of corrosion protection had increased through a number of developments and studies. Recently, cathodic protection was applied to some reinforced concrete structures and has gradually expanded in scope in South Korea. Technical expertise is necessary to understand the underlying electrochemical principles and also because cathodic protection is important for normal physical maintenance. Therefore, in this study, we introduce the technical details and examples of applications of the cathodic protection of reinforced concrete, including the basic theory, principles, and other criteria.

음극방식은 19세기 초에 해수 및 지중 금속의 부식을 억제시키기 위한 기술로 처음 소개되었으며, 1970년대에 철근콘크리트 분야에 음극방식 기술이 적용되기 시작하였다. 1990년대에는 국제적으로 많은 연구 및 기술개발로 인하여 철근 부식방지의 효용성이 널리 증명되었다. 국내에도 최근 철근콘크리트 분야에 음극방식이 소개되어 일부 구조물에 적용되기 시작하고 있으며 점차 그 범위가 확대되고 있다. 음극방식의 특징은 일반 콘크리트구조물의 물리적인 보수 유지와는 달리 전기화학적 원리를 응용한 방식기술이기 때문에 다소의 전문적인 지식이 필요하다. 따라서 본 연구에서는 철근콘크리트의 방식기술, 음극방식의 원리, 설계, 적용 등의 기본적인 이론과 철근콘크리트의 음극방식 기준 및 음극방식을 철근콘크리트구조물에 적용할 때의 기술적인 내용 및 적용사례를 소개한다.

Keywords

References

  1. J. P. Broomfield, Corrosion of Steel in Concrete, E & Fn Spon, 1997.
  2. P. Chess, Cathodic Protection of Steel in Concrete, Gronvold & Karnov, E & Fn Spon, 1998.
  3. J. A. Jeong and C. K. Jin, "Tidal water effect on the hybrid cathodic protection systems for marine concrete structures," Journal of Advanced Concrete Technology, vol. 10, no. 12, pp. 389-394, 2012. https://doi.org/10.3151/jact.10.389
  4. P. Schiessl and M. Raupach, "Laboratory studies and calculations on the influence of crack width on chloride-induced corrosion of steel in concrete," ACI Materials Journal, vol. 94, no. 1, pp. 56-62, 1997.
  5. J. M. Shilstone, "Concrete mixture optimization," Concrete International, vol. 12, no. 6, pp. 3339, 1990.
  6. J. J. Chang, W. yeih, and C. L. Tsai, "Enhancement of bond strength for epoxy-coated rebar using river sand," Constructuion and Building Materials, vol. 16, no. 8, pp. 45-472, 2002.
  7. F. Tittarelli and T. Bellezze, "Investigation of the major reduction reaction occurring during the passivation of galvanized steel rebars," Corrosion Science, vol. 52, no. 3, pp. 978-983, 2010. https://doi.org/10.1016/j.corsci.2009.11.021
  8. J. A. Jeong, W. S. Chung, and Y. H. Kim, "Electrochemical measurements of cathodic protection for reinforced concrete piles in a marine environment using embedded corrosion monitoring sensors," Metals & Materials International, vol. 19, no. 3, pp. 445-452, 2013. https://doi.org/10.1007/s12540-013-3010-1
  9. M. V. Diamanti, E. A. Rosales, G. Raffaini, F. Ganazzoli, A. Brenna, M. Pedefferri, and M. Ormellese, "Molecular modelling and electrochemical evaluation of organic inhibitors in concrete," Corrosion Science, vol. 100, pp. 231-241, 2015. https://doi.org/10.1016/j.corsci.2015.07.034
  10. R. M. Schroeder and I. L. Muller, "Stress corrosion cracking and hydrogen embrittlement susceptibility of an eutectoid steel employed in prestressed concrete," Corrosion Science, vol. 45, no. 9, pp. 1969-1983, 2003. https://doi.org/10.1016/S0010-938X(03)00035-0
  11. M. Y. Park, J. S. Moon, and D. J. Kang, "The corrosion inhibition characteristics of sodium nitrite using an on-line corrosion rate measurement system," Corrosion Science and Technology, vol. 14, no. 2, pp. 85-92, 2015. https://doi.org/10.14773/cst.2015.14.2.85
  12. H. W. Cho, H. Y. Chang, B. T. Lim, H. B. Park, and Y. S. Kim, "Effect of $RuCl_3$ concentration on the lifespan of insoluble anode for cathodic protection on PCCP," Corrosion Science and Technology, vol. 14, no. 4, pp. 177-183, 2015. https://doi.org/10.14773/cst.2015.14.4.177
  13. M. Perrin, L. Gaillet, C. Tessier, and H. Idrissi, "Hydrogen embrittlement of prestressing cables," Corrosion Science, vol. 52, pp. 1915-1926, 2010. https://doi.org/10.1016/j.corsci.2010.02.041
  14. X. Jing and Y. Wu, "Electrochemical studies on the performance of conductive overlay material in cathodic protection of reinforced concrete," Construction and Building Materials, vol. 25, no. 5, pp. 2655-2662, 2011. https://doi.org/10.1016/j.conbuildmat.2010.12.015
  15. D. A. Jones, Principles and prevention of corrosion, 2nd Edition, Prentice Hall, 1996.
  16. K. Wilson, M. Jawed, and V. Ngala, "The selection and use of cathodic protection systems for the repair of reinforced concrete structures," Construction and Building Materials, vol. 39, pp. 19-25, 2013. https://doi.org/10.1016/j.conbuildmat.2012.05.037
  17. J. A. Jeong and C. K. Jin, "The effect of temperature and relative humidity on concrete slab specimens with impressed current cathodic protection system," Journal of the Korean Society of Marine Engineering, vol. 37, no. 3, pp. 260-265, 2013. https://doi.org/10.5916/jkosme.2013.37.3.260