Acknowledgement
본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(No. 20217910100010).
References
- N. Yahaya, N. M. Noor, M. M. Din and S. H. M. Nor, Prediction of CO2 Corrosion Growth in Submarine Pipelines. Malaysian Journal of Civil Engineering, 21, 61 (2009). Doi: https://doi.org/10.11113/mjce.v21.15778
- A. Osella and A. Favetto, Effects of Soil Resistivity on Currents Induced on Pipelines, Journal of Applied Geophysics, 44, 303 (2000). Doi: https://doi.org/10.1016/s0926-9851(00)00008-2
- J. G. Kim and Y. W. Kim, Cathodic Protection Criteria of Thermally Insulated Pipeline Buried in Soil, Corrosion Science, 43, 2011 (2001). Doi: https://doi.org/10.1016/S0010-938X(01)00015-4
- I. Gurrappa, Cathodic Protection of Cooling Water Systems and Selection of Appropriate Materials, Journal of Materials Processing Technology, 166, 256 (2005). Doi: https://doi.org/10.1016/j.jmatprotec.2004.09.074
- E. S. Ibrahim, Corrosion Control in Electric Power Systems, Electric Power Systems Research, 52, 9 (1999). Doi: https://doi.org/10.1016/S0378-7796(98)00133-3
- BS EN 12954, General Principles of Cathodic Protection of Buried or Immersed Onshore Metallic Structures (2019).
- ISO 15589-1, Petroleum and Natural Gas Industries Cathodic Protection of Pipeline Transportation Systems (2003).
- R. A. Gummow and P. Eng, GIC Effects on Pipeline Corrosion and Corrosion Control Systems, Journal of Atmospheric and Solar-Terrestrial Physics, 64, 1755 (2002). Doi: https://doi.org/10.1016/S1364-6826(02)00125-6
- M. E. Orazem, The Close Interval Potential Survey (CIS/CIPS) Method for Detecting Corrosion in Underground Pipelines, Underground Pipeline Corrosion, 1st ed, p. 227, Woodhead Publishing, Cambridge (2014). Doi: https://doi.org/10.1533/9780857099266.2.227
- Y. B. Cho, Y. T. Kho, S. Y. Li, K. S. Jeon, and K. W. Park, Coating Defects Survey on Buried Pipelines by Voltage Gradient Technique, Journal of Corrosion Science Society of Korea, 26, 400 (1997). http://www.j-cst.org/opensource/pdfjs/web/pdf_viewer.htm?code=J00260500400
- F. M. Song, Predicting the Effect of Soil Seasonal Change on Stress Corrosion Cracking Susceptibility of Buried Pipelines at High pH, Corrosion, 66, 095004 (2010). Doi: https://doi.org/10.5006/1.3490309
- Z. Qin, A. Karnieli, P. Berliner, A Mono-window Algorithm for Retrieving Land Surface Temperature from Landsat TM data and its Application to the Israel-Egypt Border Region, International Journal of Remote Sensing, 22, 3719 (2001). Doi: https://doi.org/10.1080/01431160010006971
- D. Eleftheriou, K. Kiachidis, G. Kalmintzis, A. Kalea, C. Bantasis,P. Koumadoraki, M. E. Spathara, A. Tsolaki, M. I. Tzampazidou and A. Gemitzi, Determination of Annual and Seasonal Daytime and Nighttime Trends of MODIS LST over Greece - Climate Change Implications, Science of the Total Environment, 616, 937 (2018). Doi: https://doi.org/10.1016/j.scitotenv.2017.10.226
- C. E. Ki, Relationship between Air Temperature and Soil and Plant Surface Temperatures, Journal of Climate Change Research, 12, 755 (2021). Doi: https://doi.org/10.15531/ksccr.2021.12.6.755
- Z. L. Li, F. Becker, Feasibility of Land Surface Temperature and Emissivity Determination from AVHRR Data, Remote Sensing of Environment, 43, 67 (1993). Doi: https://doi.org/10.1016/0034-4257(93)90065-6
- X. Yin, P. A. Arp, Predicting Forest Soil Temperatures from Monthly Air Temperature and Precipitation Records, Canadian Journal of Forest Research, 23, 2521(1993). Doi: https://doi.org/10.1139/x93-313
- M. Bayatvarkeshi, S. K. Bhagat, K. Mohammadi, O. Kisi, M. Farahani, A. Hasani, R. Deo, Z. M. Yaseen, Modeling Soil Temperature using Air Temperature Features in Diverse Climatic Conditions with Complementary Machine Learning Models, Computers and Electronics in Agriculture, 185, 106158 (2021). Doi: https://doi.org/10.1016/j.compag.2021.106158
- M. A. Islam, R. Lubbad, S. A. G. Amiri, V. Isaev, Y. Shevchuk, A. V. Uvarova, M. S. Afzal, A. Kumar, Modelling the Seasonal Variations of Soil Temperatures in the Arctic Coasts, Polar Science, 30, 100732 (2021). Doi: https://doi.org/10.1016/j.polar.2021.100732
- A. M. E. Shamy, M. F. Shehata, A. I. M. Ismail, Effect of Moisture Contents of Bentonitic Clay on the Corrosion Behavior of Steel Pipelines, Applied Clay Science, 114, 461(2015). Doi: http://dx.doi.org/10.1016/j.clay.2015.06.041
- M. N. Norhazilan, Y. Nordin, K. S. Lim, R. O. Siti, A. R. A. Safuan, M. H. Norhamimi, Relationship between Soil Properties and Corrosion of Carbon Steel, Applied Sciences Research, 8, 1739 (2012). Doi: https://www.researchgate.net/publication/259760804
- ASTM A106, Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service (2002).
- ASTM G57, Standard Test Method for Field Measurement of Soil Resistivity using the Wenner Four-Electrode Method (2012)