• Title/Summary/Keyword: Cathodes

Search Result 269, Processing Time 0.028 seconds

Oxide Cathodes for Reliable Electron Sources

  • Weon, Byung-Mook;Je, Jung-Ho;Park, Gong-Seog;Koh, Nam-Je;Barratt, David S.;Saito, Tsunenari
    • Journal of Information Display
    • /
    • v.6 no.4
    • /
    • pp.35-39
    • /
    • 2005
  • In this paper, we investigate the oxide cathodes for the development of reliable electron sources. Poisoning in oxide cathodes is one of the serious problems in achieving reliable electron emission. In particular, early poisoning induces poor life performance as will be demonstrated herein. The survivability of electron emission sources is significantly improved by high doping of high-speed activator. The robust oxide cathodes with 0.17 % Mg operating at about 1,050 K are expected to work for very long times (>100,000 hours). We suggest that this key idea will contribute to solving the basic problems in oxide cathodes such as poisoning or ion bombardment for high power or high frequency applications of electron sources.

Effects of Surface Treatment on Field Emission Properties for Carbon Nanotube Cathodes (탄소나노튜브 캐소드에서 표면처리 방법이 전계방출 특성에 미치는 영향)

  • Seong, Myeong-Seok;Oh, Jeong-Seob;Lee, Ji-Eon;Jung, Seung-Jin;Kim, Tae-Sik;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 2006
  • Carbon nanotube cathodes (CNT cathodes) were fabricated by a screen printing method using multi-walled carbon nanotubes. The effects of surface treatment on CNT cathodes were investigated for use in high efficiency field emission displays. The optimum surface treatment for a CNT cathode is dependent on a relative bonding force of CNT films on the cathode after a heat treatment. Because of the high bonding force used in the Liquid method, this method is recommended for CNT cathodes which are heat-treated at $390^{\circ}C$ in a $N_2$ atmosphere. The Rolling method is applicable for CNT cathodes fabricated at $350^{\circ}C$ in an atmosphere of air. The results of this study provide basic criteria for the selection of an appropriate surface treatment for large area CNT cathodes.

Effects on Addition of Metal Oxides with Low Workfunctions on the Ca-Sr-Ba Oxide Cathodes for VUV Ionizers (VUV 이오나이저용 Ca-Sr-Ba계 산화물 캐소드에 낮은 일함수를 갖는 금속산화물 첨가의 영향)

  • Park, Seung-Kyu;Lee, Jonghyuk;Kim, Ran Hee;Jung, Juhyoung;Han, Wan Gyu;Lee, Soo Huan;Jeon, Sung Woo;Kim, Dae Jun;Kim, Do-Yun;Lee, Kwang-Sup
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.241-251
    • /
    • 2019
  • There are several manufacturing techniques for developing thermionic cathodes for vacuum ultraviolet(VUV) ionizers. The triple alkaline earth metal emitters(Ca-Sr-Ba) are formulated as efficient and reliable thermo-electron sources with a great many different compositions for the ionizing devices. We prepare two basic suspensions with different compositions: calcium, strontium and barium. After evaluating the electron-emitting performance for europium, gadolinium, and yttrium-based cathodes mixed with these suspensions, we selected the yttrium for its better performance. Next, another transition metal indium and a lanthanide metal neodymium salt is introduced to two base emitters. These final composite metal emitters are coated on the tungsten filament and then activated to the oxide cathodes by an intentionally programmed calcination process under an ultra-high vacuum(${\sim}10^{-6}torr$). The performance of electron emission of the cathodes is characterized by their anode currents with respect to the addition of each element, In and Nd, and their concentration of cathodes. Compared to both the base cathodes, the electron emission performance of the cathodes containing indium and neodymium decreases. The anode current of the Nd cathode is more markedly degraded than that with In.

Electrochemical Properties of FeS2 Thin Film Electrodes for Thermal Batteries (열전지용 FeS2 박막전극의 전기화학적 특성)

  • Im, Chae-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.318-324
    • /
    • 2017
  • Powder compaction technology is widely used to prepare thermal battery components. This method, however, is limited by the size, thickness, and geometry of the battery components. This limitation leads to excessive cell capacity, overweight, and higher cost of the pellets, which decreases the specific capacities and delays the activation time of thermal batteries. $FeS_2$ thin-film cathodes were fabricated by tape-casting technology and analyzed by SEM and EDS in this paper. The residual organic binder of the $FeS_2$ thin-film cathodes decreased with the temperature of the heat treatment, which improved the specific capacity because of the lower resistance. Specific capacities of the $FeS_2$ thin-film cathodes decreased because of the higher residual binder and the restrictive reaction of active materials with molten salts as the thickness increased. $FeS_2$ thin-film cathodes showed much higher specific capacity (1,212.2 As/g) than pellet cathodes (860.7 As/g) at the optimal heat-treatment temperature ($230^{\circ}C$).

Electrochemical Properties of Acetylene Black/Multi-walled Carbon Nanotube Cathodes for Lithium Thionyl Chloride Batteries at High Discharge Currents

  • Song, Hee-Youb;Jung, Moon-Hyung;Jeong, Soon-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.430-436
    • /
    • 2020
  • Lithium thionyl chloride (Li/SOCl2) batteries exhibit the highest energy densities seen in commercially available primary batteries because of their high operating voltages and discharge capacities. They are widely used in various extreme environments; however, they show signs of degradation at high discharge currents. The discharge performance of Li/SOCl2 is considered to be greatly dependent on the carbon materials used in the cathode. Therefore, suitable carbon materials must be chosen to improve discharge performances. In this work, we investigated the discharge properties of Li/SOCl2 batteries in which the cathodes contained various ratios of acetylene black (AB) and multi-walled carbon nanotubes (MWCNTs) at high discharge currents. It was confirmed that the MWCNTs were effectively dispersed in the mixed AB/MWCNT cathodes. Moreover, the discharge capacity and operating voltage improved at high discharge currents in these mixed cathodes when compared with pure AB cathodes. It was found that the mesopores present in the cathodes have a strong impact on the discharge capacity, while the macropores present on the cathode surface influence the discharge properties at high discharge rates in Li/SOCl2 batteries. These results indicate that the ratio of mesopores and macropores in the cathode is key to improving the discharge performance of Li/SOCl2 batteries, as is the dispersion of the MWCNTs.

Electrochemical nitrate reduction using a cell divided by ion-exchange membrane

  • Lee, Jongkeun;Cha, Ho Young;Min, Kyung Jin;Cho, Jinwoo;Park, Ki Young
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.189-194
    • /
    • 2018
  • Electrochemical reduction of nitrate was studied using Zn, Cu and (Ir+Ru)-Ti cathodes and Pt/Ti anode in a cell divided by an ion exchange membrane. During electrolysis, effects of the different cathode types on operating parameters (i.e., voltage, temperature and pH), nitrate removal efficiency and by-products (i.e., nitrite and ammonia) formation were investigated. Ammonia oxidation rate in the presence of NaCl was also determined using the different ratios of hypochlorous acid to ammonia. The operating parameter values were similar for all types of cathode materials and were maintained relatively constant. Nitrate was well reduced and converted mostly to ammonia using Zn and Cu cathodes. Ammonia, produced as a by-product of nitrate reduction, was oxidized in the presence of NaCl in the electrochemical process and the oxidation performance was enhanced upon increasing the hypochlorous acid-to-ammonia ratio to 1.09:1. Zn and Cu cathodes promoted the nitrate reduction to ammonia and the produced ammonia was finally removed from solution by reacting with hypochlorite ions. Using Zn or Cu cathodes, instead of noble metal cathodes, in the electrochemical process can be an alternative technology for nitrate-containing wastewater treatment.

Stabilizing Li2O-based Cathode/Electrolyte Interfaces through Succinonitrile Addition

  • Myeong Jun Joo;Yong Joon Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.231-242
    • /
    • 2023
  • Li2O-based cathodes utilizing oxide-peroxide conversion are innovative next-generation cathodes that have the potential to surpass the capacity of current commercial cathodes. However, these cathodes are exposed to severe cathode-electrolyte side reactions owing to the formation of highly reactive superoxides (Ox-, 1 ≤ x < 2) from O2- ions in the Li2O structure during charging. Succinonitrile (SN) has been used as a stabilizer at the cathode/electrolyte interface to mitigate cathode-electrolyte side reactions. SN forms a protective layer through decomposition during cycling, potentially reducing unwanted side reactions at the interface. In this study, a composite of Li2O and Ni-embedded reduced graphene oxide (LNGO) was used as the Li2O-based cathode. The addition of SN effectively thinned the interfacial layer formed during cycling. The presence of a N-derived layer resulting from the decomposition of SN was observed after cycling, potentially suppressing the formation of undesirable reaction products and the growth of the interfacial layer. The cell with the SN additive exhibited an enhanced electrochemical performance, including increased usable capacity and improved cyclic performance. The results confirm that incorporating the SN additive effectively stabilizes the cathode-electrolyte interface in Li2O-based cathodes.

Emission Profile Studies of Thermionic Cathodes and Field Emitters

  • Tawa, Yasuhiro;Kai, Junjiro;Tama, Masayoshi;Ijima, Kenji;Saito, Tsunenari
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.371-375
    • /
    • 2002
  • Emissions of thermionic cathodes and field emitters were studied using a cathode emission profiler which works based on the anode scanning method. Findings about impregnated cathodes in thermal activation and gas poisoning processes are shown. Effects of surface treatments for field emitters are studied from the viewpoint of emission profiles and characteristics of the emitters.

  • PDF

Electrical and Optical Properties of Red Phosphorescent Top Emission OLEDs with Transparent Metal Cathodes (투명 금속 음극을 이용한 전면발광 적색 인광 OLEDs의 전기 및 광학적 특성)

  • Kim, So-Youn;Ha, Mi-Young;Moon, Dae-Gyu;Lee, Chan-Jae;Han, Jeong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.802-807
    • /
    • 2007
  • We have developed red phosphorescent top emission organic light-emitting diodes with transparent metal cathodes deposited by using thermal evaporation technique. Phosphorescent guest molecule, BtpIr(acac), was doped in host CBP for the red phosphorescent emission, Ca/Ag, Ba/Ag, and Mg/Ag double layers were used as cathode materials of top emission devices, which were composed of glass/Ni/2TNATA(15 nm)/${\alpha}$-NPD(35 nm)/CBP:BtpIr(acac)(40 nm, 10%)/BCP(5 nm)/$Alq_3$(5 nm)/cathodes. The optical transparencies of these metal cathodes strongly depend on underlying Ca, Ba, and Mg layers. These layers also strongly affect the electrical conduction and emission properties of the red phosphorescent top emission devices.

Calculation of Field Enhancement Factor in CNT-Cathodes Dependence on Dielectric Constant of Bonding Materials

  • Kim, Tae-Sik;Shin, Heo-Young;Cho, Young-Rae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1092-1095
    • /
    • 2005
  • The effect of the dielectric constant (${\varepsilon}$) of bonding materials in screen-printed carbon nanotube cathode on field enhancement factor was investigated using the ANSYS software for high-efficient CNT-cathodes. The field enhancement factor increased with decreasing the dielectric constant and reaching a maximum value when the dielectric constant is 1, the value for a vacuum. This indicates that the best bonding materials for screen-printing CNT cathodes should have a low dielectric constant and this can be used as criteria for selecting bonding materials for use in CNT pastes for high-efficient CNT-cathodes

  • PDF