DOI QR코드

DOI QR Code

Electrochemical Properties of Acetylene Black/Multi-walled Carbon Nanotube Cathodes for Lithium Thionyl Chloride Batteries at High Discharge Currents

  • Received : 2020.07.09
  • Accepted : 2020.08.13
  • Published : 2020.11.30

Abstract

Lithium thionyl chloride (Li/SOCl2) batteries exhibit the highest energy densities seen in commercially available primary batteries because of their high operating voltages and discharge capacities. They are widely used in various extreme environments; however, they show signs of degradation at high discharge currents. The discharge performance of Li/SOCl2 is considered to be greatly dependent on the carbon materials used in the cathode. Therefore, suitable carbon materials must be chosen to improve discharge performances. In this work, we investigated the discharge properties of Li/SOCl2 batteries in which the cathodes contained various ratios of acetylene black (AB) and multi-walled carbon nanotubes (MWCNTs) at high discharge currents. It was confirmed that the MWCNTs were effectively dispersed in the mixed AB/MWCNT cathodes. Moreover, the discharge capacity and operating voltage improved at high discharge currents in these mixed cathodes when compared with pure AB cathodes. It was found that the mesopores present in the cathodes have a strong impact on the discharge capacity, while the macropores present on the cathode surface influence the discharge properties at high discharge rates in Li/SOCl2 batteries. These results indicate that the ratio of mesopores and macropores in the cathode is key to improving the discharge performance of Li/SOCl2 batteries, as is the dispersion of the MWCNTs.

Keywords

References

  1. A.J. Hills and N.A. Hampson, J. Power Sources, 1988, 24(4), 253-271. https://doi.org/10.1016/0378-7753(88)80102-2
  2. T. Placke, R. Kloepsch, S. Duhnen, and M. Winter, J. Solid State Electrochem., 2017, 21(7), 1939-1964. https://doi.org/10.1007/s10008-017-3610-7
  3. J.J. Auborn, K.W. French, S.I. Sheldon, I. Lieberman, Shah V.K., Heller A., J. Electrochem. Soc., 1973, 120(12), 1613. https://doi.org/10.1149/1.2403315
  4. B.J. Carter, R.M. Williams, F.D. Tsay, A. Rodriguez, S. Kim, M.M. Evans, and H. Frank, J. Electrochem. Soc., 1985, 132(2), 525. https://doi.org/10.1149/1.2113880
  5. A.N. Dey, Electrochim. Acta, 1976, 21(11), 855-860. https://doi.org/10.1016/0013-4686(76)85057-8
  6. V.S. Bagotzky, V.E. Kazarinov, Y.M. Volfkovich, L.S. Kanevsky, and L.A. Beketayeva, J. Power Sources, 1989, 26(3-4), 427-433. https://doi.org/10.1016/0378-7753(89)80158-2
  7. Y. Zhang and C.S. Cha, Electrochim. Acta, 1993, 38(6), 827-834. https://doi.org/10.1016/0013-4686(93)85040-6
  8. M. Jakic, M. Kovac, M. Gaberscek, and S. Pejovnik, Electrochim. Acta, 1995, 40(17), 2723-2729. https://doi.org/10.1016/0013-4686(95)00258-G
  9. D. Carmier, C. Vix-Guterl, and J. Lahaye, Carbon, 2001, 39(14), 2181-2186. https://doi.org/10.1016/S0008-6223(01)00043-4
  10. S.B. Lee, S.I. Pyun, and E.J. Lee, Electrochim. Acta, 2001, 47(6), 855-864. https://doi.org/10.1016/S0013-4686(01)00813-1
  11. C.H. Kim and S.I. Pyun, J. Electrochem. Soc., 2003, 150(9), A1176. https://doi.org/10.1149/1.1594728
  12. Y. Gao, L Chen, M. Quan, G. Zhang, G. Zheng, and J. Zhao, J. Electroanal. Chem., 2018, 808, 8-13. https://doi.org/10.1016/j.jelechem.2017.11.062
  13. K. Li, Z. Xu, X. Shen, K. Yao, J. Zhao, R. Zhang, J. Zhang, L. Wang, and J. Zhu, Electrochim. Acta, 2019, 295, 569-576. https://doi.org/10.1016/j.electacta.2018.10.178
  14. C. Du, S. Liu, W. Zhang, X. Zhang, and Y. Deng, J. Electrochem. Soc., 2018, 165(9), A1955. https://doi.org/10.1149/2.0061810jes
  15. K. Fujisawa, H.J. Kim, S.H. Go, H. Muramatsu, T. Hayasi, M. Endo, T.C. Hirschmann, M.S. Dresselhaus, Y.A. Kim, and P.T. Araujo, Appl. Sci., 2016, 6(4), 109. https://doi.org/10.3390/app6040109
  16. W.-S. Zhao, K. Fu, D.-W. Wang, M. Li, G. Wang, and W.-Y. Yin, Appl. Sci., 2019, 9(11), 2174. https://doi.org/10.3390/app9112174
  17. H. Lyu, C.J. Jafta, I. Popovs, H.M. Meyer, J.A. Hachtel, J. Huang, B.G. Sumpter, S. Dai, and X.-G. Sun, J. Mater. Chem. A, 2019, 7(30), 17888-17895. https://doi.org/10.1039/C9TA04869C
  18. S. Qiu, G. Lu, J. Liu, H. Lyu, C. Hu, B. Li, X. Yan, J. Guo, and Z. Guo, RSC Adv., 2015, 5(106), 87286-87294. https://doi.org/10.1039/C5RA17147D
  19. X. Li, H Gu., J. Liu, H. Wei, S. Qiu, Y. Fu, H. Lv, G. Lu, Y. Wang, and Z. Guo, RSC Adv., 2015, 5(10), 7237-7244. https://doi.org/10.1039/C4RA15228J
  20. J. Candy, P. Fouilloux, M. Keddam, and H. Takenouti, Electrochim. Acta, 1981, 26(8), 1029-1034. https://doi.org/10.1016/0013-4686(81)85072-4
  21. F. Walsh, M. Pozin, A. Cherniy, and Jr.K. Tikhonov, J. Power Sources, 2001, 97, 714-718. https://doi.org/10.1016/S0378-7753(01)00751-0
  22. T. Osaka, D. Mukoyama, and H. Nara, J. Electrochem. Soc., 2015, 162(14), A2529. https://doi.org/10.1149/2.0141514jes
  23. Y. Lee, D. Kim, S. Kim, M. Kim, H. Choe, K. Lee, J. Sohn, S. Cha, J. Kim, and K. Park, ACS Appl. Mater. Interfaces, 2016, 8(11), 7022-7029. https://doi.org/10.1021/acsami.5b12284
  24. M. A. Zabara, C.B. Uzundal, and B. Ulgut, J. Electrochem. Soc., 2019, 166(6), A811. https://doi.org/10.1149/2.1231904jes