DOI QR코드

DOI QR Code

Electrochemical Properties of FeS2 Thin Film Electrodes for Thermal Batteries

열전지용 FeS2 박막전극의 전기화학적 특성

  • Im, Chae-Nam (The 4th R&D Institute-4, Agency for Defense Development)
  • 임채남 (국방과학연구소 제4기술연구본부 4부)
  • Received : 2017.02.02
  • Accepted : 2017.03.16
  • Published : 2017.05.01

Abstract

Powder compaction technology is widely used to prepare thermal battery components. This method, however, is limited by the size, thickness, and geometry of the battery components. This limitation leads to excessive cell capacity, overweight, and higher cost of the pellets, which decreases the specific capacities and delays the activation time of thermal batteries. $FeS_2$ thin-film cathodes were fabricated by tape-casting technology and analyzed by SEM and EDS in this paper. The residual organic binder of the $FeS_2$ thin-film cathodes decreased with the temperature of the heat treatment, which improved the specific capacity because of the lower resistance. Specific capacities of the $FeS_2$ thin-film cathodes decreased because of the higher residual binder and the restrictive reaction of active materials with molten salts as the thickness increased. $FeS_2$ thin-film cathodes showed much higher specific capacity (1,212.2 As/g) than pellet cathodes (860.7 As/g) at the optimal heat-treatment temperature ($230^{\circ}C$).

Keywords

References

  1. Y. S. Choi, H. R. Yu, and H. W. Cheong, J. Power Sources, 276, 102 (2015). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2014.11.103]
  2. R. A. Guidotti and P. Masset, J. Power Sources, 161, 1443 (2006). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2006. 06.013]
  3. D. E. Reisner, T. D. Xiao, H. Ye, J. Dai, R. A. Guidotti, and F. W. Reinhardt, J. New Mater. Electrochem. Syst., 2, 279 (1999).
  4. A. G. Gevorkyan, R. Cohen, and O. Raz, Proc. 47th Power Sources Conference (Power Sources Conference, Orlando, USA, 2016) p. 90.
  5. D. Harney, Proc. 44th Power Sources Conference (Power Sources Conference, Las vegas, USA, 2010) p. 669.
  6. J. Reinig, Proc. 45th Power Sources Conference (Power Sources Conference, Las vegas, USA, 2012) p. 627.
  7. T. Leviatan, S. Cohen, I. Eliel, G. E. Shter, A. Cohen, V. Beilin, and G. S. Grader, Proc. 45th Power Sources Conference (Power Sources Conference, Las vegas, USA, 2012) p. 635.
  8. Y. S. Choi, H. R. Yu, H. W. Cheong, S. B. Cho, and Y. S. Lee, Appl. Chem. Eng., 25, 161 (2014). https://doi.org/10.14478/ace.2013.1123
  9. J. P. Pemsler, R.K.F. Lam, J. K. Litchfield, S. Dallek, B. F. Larrick, and B. C. Beard, J. Electrochem. Soc., 137, 1 (1990). https://doi.org/10.1149/1.2086362
  10. P. Masset and R. A. Guidotti, J. Power Sources, 177, 509 (2008). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2007.11.017]
  11. P. Masset and R. A. Guidotti, J. Power Soureces, 178, 456 (2008). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2007. 11.073]
  12. H. W. Cheong, S. H. Kang, J. M. Kim, and S. B. Cho, J. Ceramic Processing Research, 13, Special 2, 198 (2012).
  13. S. Fujiwara, M. Inaba, and A. Tasaka, J. Power Sources, 196, 4012 (2011). [DOI: http//dx.doi.org/10.1016/j.jpowdour.2010.05.032]
  14. D. Bernardi, E. M. Pawlikowski, and J. Newman, J. Electrochem. Soc., 135, 2922 (1987).
  15. D. Bernardi and J. Nweman, J. Electrochem. Soc., 134, 1309 (1987). https://doi.org/10.1149/1.2100664
  16. Z. Tomczuk, B. Tani, N. C. Otto, M. F. Roche, and D. R. Vissers, J. Electrochem. Soc., 129, 925 (1982). https://doi.org/10.1149/1.2124067