• Title/Summary/Keyword: Cathode ratio

Search Result 280, Processing Time 0.033 seconds

A Rational Design of Coin-type Lithium-metal Full Cell for Academic Research (차세대 리튬 금속 전지 연구 및 개발을 위한 코인형 전지의 효율적 설계)

  • Lee, Mingyu;Lee, Donghyun;Han, Jaewoong;Jeong, Jinoh;Choi, Hyunbin;Lee, Hyuntae;Lim, Minhong;Lee, Hongkyung
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.65-75
    • /
    • 2021
  • Coin cell is a basic testing platform for battery research, discovering new materials and concepts, and contributing to fundamental research on next-generation batteries. Li metal batteries (LMBs) are promising since a high energy density (~500 Wh kg-1) is deliverable far beyond Li-ion. However, Li dendrite-triggered volume fluctuation and high surface cause severe deterioration of performance. Given that such drawbacks are strongly dependent on the cell parameters and structure, such as the amount of electrolyte, Li thickness, and internal pressure, reliable Li metal coin cell testing is challenging. For the LMB-specialized coin cell testing platform, this study suggests the optimal coin cell structure that secures performance and reproducibility of LMBs under stringent conditions, such as lean electrolyte, high mass loading of NMC cathode, and thinner Li use. By controlling the cathode/anode (C/A) area ratio closer to 1.0, the inactive space was minimized, mitigating the cell degradation. The quantification and imaging of inner cell pressure elucidated that the uniformity of the pressure is a crucial matter to improving performance reliability. The LMB coin cells exhibit better cycling retention and reproducibility under higher (0.6 MPa → 2.13 MPa) and uniform (standard deviation: 0.43 → 0.16) stack pressure through the changes in internal parts and introducing a flexible polymer (PDMS) film.

Crystal Structure and Electrochemical Performance of LiNi1-xCoxO2 (x=0.0~1.0) According to Co Substitution (Co 치환량에 따른 LiNi1-xCoxO2 (x=0.0~1.0)의 결정구조 및 전기화학 특성)

  • Hong, Jin K.;Oh, Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • [ $LiNi_{1-x}Co_xO_2\;(x=0.0\~1.0)$ ] powders were synthesized by citrate method, and their crystal structures and electrochemical performance as the cathode material in Li secondary batteries were analyzed. X-ray diffraction analysis revealed that all the samples carry a single phase regardless of the Co substitution. The results of Rietveld refinement suggested that the crystal structure of solid solutions varies according to the Co substitution. When the Co substitution is low $(x=0.3\~0.5)$, the solid solutions carry a cubic-like structure with a relatively small value in the ratio of lattice parameters (c/a). The solid solutions made with a higher Co substitution (x=0.7), however, exhibit a layered structure with a higher c/a ratio. This difference was also observed in the electrochemical voltage spectroscopy (EVS) profiles, whereby the Co component in scarcely substituted materials shows a charging reaction at $3.7V\;(vs.\;Li/Li^+)$, but in the heavily substituted ones at 3.92V.

A Study on the Electroplating using Macroemulsion in High Pressure (고압 매크로에멀젼을 이용한 전해도금에 관한 연구)

  • Park, Ji-Young;Yang, Jun Youl;Suh, Dong Jin;Yoo, Ki-Pung;Lim, Jong Sung
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.53-59
    • /
    • 2005
  • In this study, the supercritical electroplating was investigated by forming macroemulsion of electroplating solution using surfactant in supercritical $CO_2$. The fluorinated analogous AOT surfactant, sodium salt of bis (2,2,3,3,4,4,5,5-octafluoro-1-pentanol) sulfosuccinate which has both '$CO_2$ philic' chains and 'hydrophilic' head group was used as a surfactant, and Ni plate and Cu plate were used as the anode and the cathode, respectively. Electroplating was carried out in the conventional method and the supercritical macroemulsion and both results were compared. The supercritical electroplating was carried out in various concentration of surfactant such as 2, 4, 7 wt%, the volume ratio of Ni-plating solution to $CO_2$ was varied in the range of 10-70 vol%, and propane was used as a supercritical fluid instead of $CO_2$. According to the experimental results, the plated surface of Ni on Cu plate performed in supercritical macroemulsion was better than that, in conventional state. In the image of Ni surface plated on Cu plate in supercritical state, there were fewer pin-holes and pits comparing with that in the conventional process. The current and conductivity was increased as the volume ratio of Ni-plating solution to $CO_2$ was increased and the current and the amount of Ni plated on Cu plate were decreased as the concentration of surfactant become higher. In addition, in case of the continuous phase, using $CO_2$ was more effective than using $CO_2$.

Functional Analysis of Electrode and Small Stack Operation in Solid Oxide Fuel Cell (고체산화물 연료전지의 전극과 스택운영의 기능적 분석)

  • Bae, Joong-Myeon;Kim, Ki-Hyun;Ji, Hyun-Jin;Kim, Jung-Hyun;Kang, In-Yong;Lim, Sung-Kwang;Yoo, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.812-822
    • /
    • 2006
  • This study amis to investigate the functional analysis of anode and cathode materials in Anode supported Solid Oxide Fuel Cell. The concentration polarization of single cell was investigated with CFD (Computational Fluid Dynamics) method for the case of the different morphology by using four types of unit cell and discussed to reduce the concentration polarization. The concentration polarization at anode side effected the voltage loss in Anode supported Solid Oxide Fuel Cell and increased contact areas between fuel gas and anode side could reduce the concentration polarization. For intermediate temperature operation, Anode-supported single cells with thin electrolyte layer of YSZ (Yttria-Stabilized Zirconia) were fabricated and short stacks were built and evaluated. We also developed diesel and methane autothermal reforming (ATR) reactors in order to provide fuels to SOFC stacks. Influences of the $H_2O/C$ (steam to carbon ratio), $O_2/C$ (oxygen to carbon ratio) and GHSV (Gas Hourly Space Velocity) on performances of stacks have been investigated. Performance of the stack operated with a diesel reformer was lower than with using hydrogen as a fuel due to lower Nernst voltage and carbon formation at anode side. The stack operated with a natural gas reformer showed similar performances as with using hydrogen. Effects of various reformer parameters such as $H_2O/C$ and $O_2/C$ were carefully investigated. It is found that $O_2/C$ is a sensitive parameter to control stack performance.

Corrosion Behavior of Cathodic Electrodeposited Epoxy Based Coating for Automotive Primer (자동차용 에폭시계 양이온형 전착도료의 내식성에 대한 연구)

  • Lee, Soung-Youb;Lee, Jung-Mu;Kwag, Sam-Tag;Moon, Myung-Jun;Suh, Cha-Soo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.250-256
    • /
    • 2005
  • Coating appearance is the most important problem in automotive industry. To increase the coating appearance quality, the corrosion resistance and the coating adhesion on metal substrates must be basically solved. The phosphating film made by the pretreatment of metal substrate is important factor to increase the coating adhesion. During the cathodic electrodeposition, the pH at the cathode surface increases up to about 12. In such a highly alkaline condition, the dissolution of metal substrate and phosphate film occurs. These phenomena result in the decrease of the bonding strength between the phosphating film and the substrate. Generally, the structure of zinc phosphating film is hopeite or phosphophyllite. It has been known that the phosphophyllite film contains better corrosion resistance and paint adhesion for hot water immersion test because of the decrease of dissolving amount of both metal substrate and phosphating film during the cathodic electrodeposition. It is found that the addition of Ni and Mn composition increase P-ratio and then can improve the paint adhesion on metal surface and the corrosion resistance.

Removing High Concentration Nitrogen by Electrolysis (전기분해에 의한 고농도 질소 제거의 특성)

  • Gil, Dae-Soo;Lee, Byung-Hun;Choi, Hae-Kyoung;Kwon, Dong-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.265-277
    • /
    • 2000
  • Laboratory experiments were conducted to investigate characteristics for removing ammonia-nitrogens by electrolysis methods. A stainless steel plate is used as the cathode and either $IrO_2{\backslash}Ti$ plate serves as the anode. Experiments were conducted to examine the effects of the operating conditions, such as the current density, retention time, electrode gap, $Cl^-/NH_4{^+}-N$ on the $NH_4{^+}-N$ removal efficiency. Possible optimum range for these operating variables are experimentally determined. The $NH_4{^+}-N$ removal efficiencies between plate type anode and net type anode were about same effect, but electrolytic power using net type anode is low than plate type anode. The $Cl^-/NH_4{^+}-N$ ratio was about $20.0kgCl^-/kgNH_4{^+}-N$ when $NH_4{^+}-N$ removal obtained 73 %, $Cl^-/NH_4{^+}-N$ ratio needs $27.6kgCl^-/kgNH_4{^+}-N$ so as to $NH_4{^+}-N$ completely remove. The removal efficiency of $NH_4{^+}-N$ increase with current density, retention time and $Cl^-/NH_4{^+}-N$ ratio, but decreased with increasing electrode gap. The relationship of operating conditions and $NH_4{^+}-N$ removal efficiencies are $$NH_4{^+}-N_{re}(%)=14.5364(Current\;density)^{0.7093}{\times}(HRT)^{1.0060}{\times}(Gap)^{-0.9926}{\times}(Cl^-/NH_4{^+}-N)^{1.0024}$$ With adding COD or/and alkalinity, relationships are $$NH_4{^+}-N_{re}(%)=9.8408(Current\;density)^{0.6232}{\times}(HRT)^{1.0534}$$ There existed a competition between the removals for $NH_4{^+}-N$ and $COD_{Cr}$ during electrolysis, the removal of $NH_4{^+}-N$ was shown to be dominant. $NH_4{^+}-N$ removal was high as addition of glucose and alkalinity.

  • PDF

An Experimental Study on the Combustion Characteristics of a Catalytic Combustor for an MCFC Power Generation System (MCFC 발전시스템용 촉매연소기의 연소 특성에 관한 실험적 연구)

  • Hong, Dong-Jin;Ahn, Kook-Young;Kim, Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.405-412
    • /
    • 2012
  • In the MCFC power generation system, the combustor supplies a high temperature mixture of gases to the cathode and heat to the reformer by using the off-gas from the anode; the off-gas includes high concentrations of $H_2O$ and $CO_2$. Since a combustor needs to be operated in a very lean condition and avoid local heating, a catalytic combustor is usually adopted. Catalytic combustion is also generally accepted as one of the environmentally preferred alternatives for generation of heat and power from fossil fuels because of its complete combustion and low emissions of pollutants such as CO, UHC, and $NO_x$. In this study, experiments were conducted on catalytic combustion behavior in the presence of Pd-based catalysts for the BOP (Balance Of Plant) of 5 kW MCFC (Molten Carbonate Fuel Cell) power generation systems. Extensive investigations were carried out on the catalyst performance with the gaseous $CH_4$ fuel by changing such various parameters as $H_2$ addition, inlet temperature, excess air ratio, space velocity, catalyst type, and start-up schedule of the pilot system adopted in the BOP.

Fabrication and Electrochemical Characterization of All Solid-State Thin Film Micro-Battery by in-situ Sputtering (In-situ 스퍼터링을 이용한 잔고상 박막 전지의 제작 및 전기화학적 특성 평가)

  • Jeon Eun Jeong;Yoon Young Soo;Nam Sang Cheol;Cho Won Il;Shin Young Wha
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.115-120
    • /
    • 2000
  • All solid-state thin film micro-batteries consisting of lithium metal anode, an amorphous LiPON electrolyte and cathode of vanadium oxide have been fabricated and characterized, which were fabricated with cell structure of $Li/LiPON/V_2O_5Pt$. The effect of various oxygen partial pressure on the electrochemical properties of vanadium oxide thin films formed by d.c. reactive sputtering deposition were investigated. The vanadium oxide thin film with deposition condition of $20\%\;O_2/Ar$ ratio showed good cycling behavior. In in-siか process, the LiPON electrolyte was deposited on the $V_2O_5$ films without breaking vacuum by r.f. magnetron sputtering at room temperature. After deposition of the amorphous LiPON, the Li metal films were grown by a thermal evaporator in a dry room. The charge-discharge cycle measurements as a function of current density and voltage variation revealed that the $Li/LiPON/V_2O_5$ thin film had excellent rechargeable properly when current density was $7{\mu}A/cm^2$. and cut-off voltage was between 3.6 and 2.7V In practical experiment, a stopwatch ran on this $Li/LiPON/V_2O_5$ thin film micro-battery. This result means that thin film micro-battery fabricated by in-siか process is a promising for power source for electronic devices.

A Case Study of Different Configurations for the Performance Analysis of Solid Oxide Fuel Cells with External Reformers (외부 개질형 평판형 고체 산화물 연료전지 시스템 구성법에 따른 효율특성)

  • Lee, Kang-Hun;Woo, Hyun-Tak;Lee, Sang-Min;Lee, Young-Duk;Kang, Sang-Gyu;Ahn, Kook-Young;Yu, Sang-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.343-350
    • /
    • 2012
  • A planar solid oxide fuel cell (PSOFC) is studied in its application in a high-temperature stationary power plant. Even though PSOFCs with external reformers are designed for application from the distributed power source to the central power plant, such PSOFCs may sacrifice more system efficiency than internally reformed SOFCs. In this study, modeling of the PSOFC with an external reformer was developed to analyze the feasibility of thermal energy utilization for the external reformer. The PSOFC system model includes the stack, reformer, burner, heat exchanger, blower, pump, PID controller, 3-way valve, reactor, mixer, and steam separator. The model was developed under the Matlab/Simulink environment with Thermolib$^{(R)}$ modules. The model was used to study the system performance according to its configuration. Three configurations of the SOFC system were selected for the comparison of the system performance. The system configuration considered the cathode recirculation, thermal sources for the external reformer, heat-up of operating gases, and condensate anode off-gas for the enhancement of the fuel concentration. The simulation results show that the magnitude of the electric efficiency of the PSOFC system for Case 2 is 12.13% higher than that for Case 1 (reference case), and the thermal efficiency of the PSOFC system for Case 3 is 76.12%, which is the highest of all the cases investigated.

Mössbauer Effect on LiFePO4 by Changing the Sintering Temperature and as Charged Cathode in Lithium Ion Battery (소결온도 변화와 충전된 리튬이온 전지 LiFePO4 정극에 대한 뫼스바우어 효과)

  • Kim, T.H.;Kim, H.S.;Im, H.S.;Yu, Y.B.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.65-70
    • /
    • 2007
  • In this paper, we composed the $LiFePO_4$ for the reversible use as the replacement material of the Li ion batteries and confirmed the good quality of the structure of the samples with the sintering temperature $675^{\circ}C,\;750^{\circ}C,\;and\;800^{\circ}C$ for 30 hours at nitrogen atmosphere. We also investigated the size of the particles through SEM picture and the change of the sintering temperature and the $Fe^{+3}$ content after charging the materials with 1 V, 160 mA and 3 V, 40 mA for 3 hours by Mossbauer spectroscopy. Also we can observe the increase on the $Fe^{+3}$ content at the charge condition and the increase of the amount ratio of the $Fe^{+3}$ ion only in sintering temperature $675^{\circ}C$ according to the increase of the electric charge. We cannot observe the change of the $Fe^{+3}$ ion in sintering temperature $800^{\circ}C$ after charging.