DOI QR코드

DOI QR Code

A Rational Design of Coin-type Lithium-metal Full Cell for Academic Research

차세대 리튬 금속 전지 연구 및 개발을 위한 코인형 전지의 효율적 설계

  • Lee, Mingyu (School of Undergraduate Studies Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Lee, Donghyun (School of Undergraduate Studies Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Han, Jaewoong (School of Undergraduate Studies Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Jeong, Jinoh (School of Undergraduate Studies Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Choi, Hyunbin (School of Undergraduate Studies Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Lee, Hyuntae (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Lim, Minhong (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Lee, Hongkyung (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • 이민규 (대구경북과학기술원 기초학부) ;
  • 이동현 (대구경북과학기술원 기초학부) ;
  • 한재웅 (대구경북과학기술원 기초학부) ;
  • 정진오 (대구경북과학기술원 기초학부) ;
  • 최현빈 (대구경북과학기술원 기초학부) ;
  • 이현태 (대구경북과학기술원 에너지공학전공) ;
  • 임민홍 (대구경북과학기술원 에너지공학전공) ;
  • 이홍경 (대구경북과학기술원 에너지공학전공)
  • Received : 2021.05.20
  • Accepted : 2021.08.03
  • Published : 2021.08.31

Abstract

Coin cell is a basic testing platform for battery research, discovering new materials and concepts, and contributing to fundamental research on next-generation batteries. Li metal batteries (LMBs) are promising since a high energy density (~500 Wh kg-1) is deliverable far beyond Li-ion. However, Li dendrite-triggered volume fluctuation and high surface cause severe deterioration of performance. Given that such drawbacks are strongly dependent on the cell parameters and structure, such as the amount of electrolyte, Li thickness, and internal pressure, reliable Li metal coin cell testing is challenging. For the LMB-specialized coin cell testing platform, this study suggests the optimal coin cell structure that secures performance and reproducibility of LMBs under stringent conditions, such as lean electrolyte, high mass loading of NMC cathode, and thinner Li use. By controlling the cathode/anode (C/A) area ratio closer to 1.0, the inactive space was minimized, mitigating the cell degradation. The quantification and imaging of inner cell pressure elucidated that the uniformity of the pressure is a crucial matter to improving performance reliability. The LMB coin cells exhibit better cycling retention and reproducibility under higher (0.6 MPa → 2.13 MPa) and uniform (standard deviation: 0.43 → 0.16) stack pressure through the changes in internal parts and introducing a flexible polymer (PDMS) film.

코인형 전지는 리튬 이차 전지 연구의 주요 평가 플랫폼으로써 새로운 소재 및 개념을 발굴하고 차세대 전지의 기초 연구에도 큰 기여를 하고 있다. 리튬 금속 전지는 500 Wh kg-1 이상의 에너지 밀도를 구현할 수 있어 유망한 차세대 리튬 이차 전지 후보군으로 고려되고 있으나, 덴드라이트 형태의 리튬 전착과 함께 극심한 부피 변화 및 표면적 증가라는 성능 열화에 매우 취약하다. 특히, 리튬 금속 전지의 수명은 전해질 양, 리튬 두께, 내부 압력 등과 같은 전지 설계 및 구조에 매우 의존하기 때문에 코인셀 수준에서의 성능 평가 및 신뢰성에 치명적이다. 따라서, 기존 코인셀 구조를 개선한 리튬 금속 음극 특화 전지 설계 및 규격화가 요구된다. 본 연구에서는 상용수준에서의 주요 전지 설계 인자인 극소량의 전해질과 높은 양극 로딩 레벨, 박막 리튬 사용 등의 환경에서 성능 및 재현성을 확보한 코인셀 구조를 제안한다. 양극과 음극의 면적비를 1에 근접하게 제어하여 비활성 공간을 최소화하고 용량 저하현상을 완화시켰다. 또한, 코인셀 내 압력을 정량화하여 압력의 균일성이 중요한 인자임을 규명하고 유연성 고분자 (PDMS) 필름 도입과 내부 부품의 변화를 통해 기존보다 높고 (0.6 MPa → 2.13 MPa) 균일한 압력(표준편차: 0.43 → 0.16)이 가하도록 개조하였다. 이를 통해 최적의 설계를 정립을 통해 기존보다 향상된 재현성을 확인하였다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부에서 지원하는 DGIST UGRP (Undergraduate Group Research Program)와 한국연구재단(NRF)에서 지원하는 신진연구자과제 (Korea funded by the Ministry of Science, ICT) (NRF-2020R1C1C1009159) 및 기초연구실지원사업 (NRF2020R1A4A4079810)의 재원으로 수행되었습니다.

References

  1. M. S. Whittingham, 'Ultimate Limits to Intercalation Reactions for Lithium Batteries', Chem. Rev., 114, 11414 (2014). https://doi.org/10.1021/cr5003003
  2. H. Kim, G. Jeong, Y.-U. Kim, J.-H. Kim, C.-M. Park and H.-J. Sohn, 'Metallic anodes for next generation secondary batteries', Chem. Soc. Rev., 42, 9011 (2013). https://doi.org/10.1039/c3cs60177c
  3. H. Lee, X. Ren, C. Niu, L. Yu, M. H. Engelhard, I. Cho, M.-H. Ryou, H. S. Jin, H.-T. Kim, J. Liu, W. Xu and J.-G. Zhang, 'Suppressing Lithium Dendrite Growth by Metallic Coating on a Separator', Adv. Funct. Mater., 27, 1704391 (2017). https://doi.org/10.1002/adfm.201704391
  4. A. Manthiram, 'An Outlook on Lithium Ion Battery Technology', ACS Cent. Sci., 3, 1063 (2017). https://doi.org/10.1021/acscentsci.7b00288
  5. M. D. Tikekar, S. Choudhury, Z. Tu and L. A. Archer, 'Design principles for electrolytes and interfaces for stable lithium-metal batteries', Nat. Energy, 1, 16114 (2016). https://doi.org/10.1038/nenergy.2016.114
  6. D. Aurbach, E. Zinigrad, Y. Cohen and H. Teller, 'A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions', Solid State Ionics, 148, 405 (2002). https://doi.org/10.1016/S0167-2738(02)00080-2
  7. D. Lu, Y. Shao, T. Lozano, W. D. Bennett, G. L. Graff, B. Polzin, J. Zhang, M. H. Engelhard, N. T. Saenz, W. A. Henderson, P. Bhattacharya, J. Liu and J. Xiao, 'Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes', Adv. Energy Mater., 5, 1400993 (2015). https://doi.org/10.1002/aenm.201400993
  8. C. Niu, H. Lee, S. Chen, Q. Li, J. Du, W. Xu, J.-G. Zhang, M. S. Whittingham, J. Xiao and J. Liu, 'Highenergy lithium metal pouch cells with limited anode swelling and long stable cycles', Nat. Energy, 4, 551 (2019). https://doi.org/10.1038/s41560-019-0390-6
  9. S. C. Nagpure, T. R. Tanim, E. J. Dufek, V. V. Viswanathan, A. J. Crawford, S. M. Wood, J. Xiao, C. C. Dickerson and B. Liaw, 'Impacts of lean electrolyte on cycle life for rechargeable Li metal batteries', J. Power Sources, 407, 53 (2018). https://doi.org/10.1016/j.jpowsour.2018.10.060
  10. V. Murray, D. S. Hall and J. R. Dahn, 'A Guide to Full Coin Cell Making for Academic Researchers', J. Electrochem. Soc., 166, A329 (2019). https://doi.org/10.1149/2.1171902jes
  11. S. Chen, C. Niu, H. Lee, Q. Li, L. Yu, W. Xu, J.-G. Zhang, E. J. Dufek, M. S. Whittingham, S. Meng, J. Xiao and J. Liu, 'Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries', Joule, 3, 1094 (2019). https://doi.org/10.1016/j.joule.2019.02.004
  12. X. Ren, L. Zou, X. Cao, M. H. Engelhard, W. Liu, S. D. Burton, H. Lee, C. Niu, B. E. Matthews, Z. Zhu, C. Wang, B. W. Arey, J. Xiao, J. Liu, J.-G. Zhang and W. Xu, 'Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions', Joule, 3, 1662 (2019). https://doi.org/10.1016/j.joule.2019.05.006
  13. X. Ren, L. Zou, S. Jiao, D. Mei, M. H. Engelhard, Q. Li, H. Lee, C. Niu, B. D. Adams, C. Wang, J. Liu, J.-G. Zhang and W. Xu, 'High-Concentration Ether Electrolytes for Stable High-Voltage Lithium Metal Batteries', ACS Energy Lett., 4, 896 (2019). https://doi.org/10.1021/acsenergylett.9b00381
  14. X. Ren, S. Chen, H. Lee, D. Mei, M. H. Engelhard, S. D. Burton, W. Zhao, J. Zheng, Q. Li, M. S. Ding, M. Schroeder, J. Alvarado, K. Xu, Y. S. Meng, J. Liu, J.-G. Zhang and W. Xu, 'Localized High-Concentration Sulfone Electrolytes for High-Efficiency Lithium-Metal Batteries', Chem, 4, 1877 (2018). https://doi.org/10.1016/j.chempr.2018.05.002
  15. L. Xia, S. Lee, Y. Jiang, S. Li, Z. Liu, L. Yu, D. Hu, S. Wang, Y. Liu and G. Z. Chen, 'Physicochemical and Electrochemical Properties of 1,1,2,2-Tetrafluoroethyl2,2,3,3-Tetrafluoropropyl Ether as a Co-Solvent for High-Voltage Lithium-Ion Electrolytes', Chem Electro Chem, 6, 3747 (2019).
  16. J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang and J.-G. Zhang, 'Pathways for practical high-energy long-cycling lithium metal batteries', Nat. Energy, 4, 180 (2019). https://doi.org/10.1038/s41560-019-0338-x
  17. J. Zheng, M. H. Engelhard, D. Mei, S. Jiao, B. J. Polzin, J.-G. Zhang and W. Xu, 'Electrolyte additive enabled fast charging and stable cycling lithium metal batteries', Nat. Energy, 2, 17012 (2017). https://doi.org/10.1038/nenergy.2017.12
  18. S. Chen, J. Zheng, D. Mei, K. S. Han, M. H. Engelhard, W. Zhao, W. Xu, J. Liu and J.-G. Zhang, 'High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes', Adv. Mater., 30, 1706102 (2018). https://doi.org/10.1002/adma.201706102
  19. S. Chen, J. Zheng, L. Yu, X. Ren, M. H. Engelhard, C. Niu, H. Lee, W. Xu, J. Xiao, J. Liu and J.-G. Zhang, 'High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes', Joule, 2, 1548 (2018). https://doi.org/10.1016/j.joule.2018.05.002
  20. B. Son, M.-H. Ryou, J. Choi, S.-H. Kim, J. M. Ko and Y. M. Lee, 'Effect of cathode/anode area ratio on electrochemical performance of lithium-ion batteries', J. Power Sources, 243, 641 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.062
  21. H. Lee, S. Chen, X. Ren, A. Martinez, V. Shutthanandan, M. Vijayakumar, K. S. Han, Q. Li, J. Liu, W. Xu and J.-G. Zhang, 'Electrode Edge Effects and the Failure Mechanism of Lithium-Metal Batteries', ChemSusChem, 11, 3821 (2018). https://doi.org/10.1002/cssc.201801445
  22. K. N. Wood, M. Noked and N. P. Dasgupta, 'Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior', ACS Energy Lett., 2, 664 (2017). https://doi.org/10.1021/acsenergylett.6b00650
  23. V. Muller, R.-G. Scurtu, M. Memm, M. A. Danzer and M. Wohlfahrt-Mehrens, 'Study of the influence of mechanical pressure on the performance and aging of Lithium-ion battery cells', J. Power Sources, 440, 227148 (2019). https://doi.org/10.1016/j.jpowsour.2019.227148
  24. X. Yin, W. Tang, I. D. Jung, K. C. Phua, S. Adams, S. W. Lee and G. W. Zheng, 'Insights into morphological evolution and cycling behaviour of lithium metal anode under mechanical pressure', Nano Energy, 50, 659 (2018). https://doi.org/10.1016/j.nanoen.2018.06.003
  25. A. J. Louli, M. Genovese, R. Weber, S. G. Hames, E. R. Logan and J. R. Dahn, 'Exploring the Impact of Mechanical Pressure on the Performance of Anode-Free Lithium Metal Cells', J. Electrochem. Soc., 166, A1291 (2019). https://doi.org/10.1149/2.0091908jes
  26. S. Kanamori, M. Matsumoto, S. Taminato, D. Mori, Y. Takeda, H. J. Hah, T. Takeuchi and N. Imanishi, 'Lithium metal deposition/dissolution under uniaxial pressure with high-rigidity layered polyethylene separator', RSC Adv., 10, 17805 (2020). https://doi.org/10.1039/D0RA02788J
  27. L. Lin, J. Wang, R. Li, C. Wang, C. Zhang, J. Yang and Y. Qian, 'Synergistic effect of interface layer and mechanical pressure for advanced Li metal anodes', Energy Storage Mater., 26, 112 (2020). https://doi.org/10.1016/j.ensm.2019.12.039
  28. L. Qin, K. Wang, H. Xu, M. Zhou, G. Yu, C. Liu, Z. Sun and J. Chen, 'The role of mechanical pressure on dendritic surface toward stable lithium metal anode', Nano Energy, 77, 105098 (2020). https://doi.org/10.1016/j.nanoen.2020.105098
  29. A. Masias, N. Felten, R. Garcia-Mendez, J. Wolfenstine and J. Sakamoto, 'Elastic, plastic, and creep mechanical properties of lithium metal', J. Mater. Sci., 54, 2585 (2019). https://doi.org/10.1007/s10853-018-2971-3
  30. M. F. Lagadec, R. Zahn and V. Wood, 'Designing Polyolefin Separators to Minimize the Impact of Local Compressive Stresses on Lithium Ion Battery Performance', J. Electrochem. Soc., 165, A1829 (2018). https://doi.org/10.1149/2.0041809jes
  31. J. Cannarella and C. B. Arnold, 'Ion transport restriction in mechanically strained separator membranes', J. Power Sources, 226, 149 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.093
  32. C. Peabody and C. B. Arnold, 'The role of mechanically induced separator creep in lithium-ion battery capacity fade', J. Power Sources, 196, 8147 (2011). https://doi.org/10.1016/j.jpowsour.2011.05.023
  33. P. Bonnick and J. R. Dahn, 'A Simple Coin Cell Design for Testing Rechargeable Zinc-Air or Alkaline Battery Systems', J. Electrochem. Soc., 159, A981 (2012). https://doi.org/10.1149/2.023207jes