• Title/Summary/Keyword: Cathepsin

Search Result 196, Processing Time 0.028 seconds

Poncirin Inhibits Osteoclast Differentiation and Bone Loss through Down-Regulation of NFATc1 In Vitro and In Vivo

  • Chun, Kwang-Hoon;Jin, Hyun Chul;Kang, Ki Sung;Chang, Tong-Shin;Hwang, Gwi Seo
    • Biomolecules & Therapeutics
    • /
    • v.28 no.4
    • /
    • pp.337-343
    • /
    • 2020
  • Activation of osteoclast and inactivation of osteoblast result in loss of bone mass with bone resorption, leading to the pathological progression of osteoporosis. The receptor activator of NF-κB ligand (RANKL) is a member of the TNF superfamily, and is a key mediator of osteoclast differentiation. A flavanone glycoside isolated from the fruit of Poncirus trifoliata, poncirin has anti-allergic, hypocholesterolemic, anti-inflammatory and anti-platelet activities. The present study investigates the effect of poncirin on osteoclast differentiation of RANKL-stimulated RAW264.7 cells. We observed reduced formation of RANKL-stimulated TRAP-positive multinucleated cells (a morphological feature of osteoclasts) after poncirin exposure. Real-time qPCR analysis showed suppression of the RANKL-mediated induction of key osteoclastogenic molecules such as NFATc1, TRAP, c-Fos, MMP9 and cathepsin K after poncirin treatment. Poncirin also inhibited the RANKL-mediated activation of NF-κB and, notably, JNK, without changes in ERK and p38 expression in RAW264.7 cells. Furthermore, we assessed the in vivo efficacy of poncirin in the lipopolysaccharide (LPS)-induced bone erosion model. Evaluating the micro-CT of femurs revealed that bone erosion in poncirin treated mice was markedly attenuated. Our results indicate that poncirin exerts anti-osteoclastic effects in vitro and in vivo by suppressing osteoclast differentiation. We believe that poncirin is a promising candidate for inflammatory bone loss therapeutics.

The Inactivation of ERK1/2, p38 and NF-kB Is Involved in the Down-Regulation of Osteoclastogenesis and Function by A2B Adenosine Receptor Stimulation

  • Kim, Bo Hyun;Oh, Ju Hee;Lee, Na Kyung
    • Molecules and Cells
    • /
    • v.40 no.10
    • /
    • pp.752-760
    • /
    • 2017
  • A2B adenosine receptor (A2BAR) is known to be the regulator of bone homeostasis, but its regulatory mechanisms in osteoclast formation are less well-defined. Here, we demonstrate the effect of A2BAR stimulation on osteoclast differentiation and activity by RANKL. A2BAR was expressed in bone marrow-derived monocyte/macrophage (BMM) and RANKL increased A2BAR expression during osteoclastogenesis. A2BAR stimulation with its specific agonist BAY 60-6583 was sufficient to inhibit the activation of ERK1/2, p38 MAP kinases and $NF-{\kappa}B$ by RANKL as well as it abrogated cell-cell fusion in the late stage of osteoclast differentiation. Stimulation of A2BAR suppressed the expression of osteoclast marker genes, such as c-Fos, TRAP, Cathepsin-K and NFATc1, induced by RANKL, and transcriptional activity of NFATc1 was also inhibited by stimulation of A2BAR. A2BAR stimulation caused a notable reduction in the expression of Atp6v0d2 and DC-STAMP related to cell-cell fusion of osteoclasts. Especially, a decrease in bone resorption activity through suppression of actin ring formation by A2BAR stimulation was observed. Taken together, these results suggest that A2BAR stimulation inhibits the activation of ERK1/2, p38 and $NF-{\kappa}B$ by RANKL, which suppresses the induction of osteoclast marker genes, thus contributing to the decrease in osteoclast cell-cell fusion and bone resorption activity.

Effect of Phosphodiesterase in Regulating the Activity of Lysosomes in the HeLa Cell Line

  • Hong, Eun-Seon;Kim, Bit-Na;Kim, Yang-Hoon;Min, Jiho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.372-379
    • /
    • 2017
  • The transport of lysosomal enzymes into the lysosomes depends on the phosphorylation of their chains and the binding of the phosphorylated residues to mannose-6-phosphate receptors. The efficiency of separation depends more on the phosphodiesterases (PDEs) than on the activity of the phosphorylation of mannose residues and can be determined in vitro. PDEs play important roles in regulation of the activation of lysosomes. The expression of proteins was confirmed by western blotting. All PDE4 series protein expression was reduced in high concentrations of rolipram. As a result of observing the fluorescence intensity after rolipram treatment, the lysosomal enzyme was activated at low concentrations and suppressed at high concentrations. High concentrations of rolipram recovered the original function. Antimicrobial activity was not shown in either 10 or $100{\mu}M$ concentrations of rolipram in treated HeLa cells in vitro. However, the higher anticancer activity at lower rolipram concentration was shown in lysosomal enzyme treated with $10{\mu}M$ of rolipram. The anticancer activity was confirmed through cathepsin B and D assay. Tranfection allowed examination of the relationship between PDE4 and lysosomal activity in more detail. Protein expression was confirmed to be reduced. Fluorescence intensity showed decreased activity of lysosomes and ROS in cells transfected with the antisense sequences of PDE4 A, B, C, and D. PDE4A showed anticancer activity, whereas lysosome from cells transfected with the antisense sequences of PDE4 B, C, and D had decreased anticancer activity. These results showed the PDE4 A, B, C, and D are conjunctly related with lysosomal activity.

Identification of Gene Expression Signatures in Korean Acute Leukemia Patients

  • Lee kyung-Hun;Park Se-Won;Kim In-Ho;Yoon Sung-Soo;Park Seon-Yang;Kim Byoung-Kook
    • Genomics & Informatics
    • /
    • v.4 no.3
    • /
    • pp.97-102
    • /
    • 2006
  • In acute leukemia patients, several successful methods of expression profiling have been used for various purposes, i.e., to identify new disease class, to select a therapeutic target, or to predict chemo-sensitivity and clinical outcome. In the present study, we tested the peripheral blood of 47 acute leukemia patients in an attempt to identify differentially expressed genes in AML and ALL using a Korean-made 10K oligo-nucleotide microarray. Methods: Total RNA was prepared from peripheral blood and amplified for microarray experimentation. SAM (significant analysis of microarray) and PAM (prediction analysis of microarray) were used to select significant genes. The selected genes were tested for in a test group, independently of the training group. Results: We identified 345 differentially expressed genes that differentiated AML and ALL patients (FWER<0.05). Genes were selected using the training group (n=35) and tested for in the test group (n=12). Both training group and test group discriminated AML and ALL patients accurately. Genes that showed relatively high expression in AML patients were deoxynucleotidyl transferase, pre-B lymphocyte gene 3, B-cell linker, CD9 antigen, lymphoid enhancer-binding factor 1, CD79B antigen, and early B-cell factor. Genes highly expressed in ALL patients were annexin A 1, amyloid beta (A4) precursor protein, amyloid beta (A4) precursor-like protein 2, cathepsin C, lysozyme (renal amyloidosis), myeloperoxidase, and hematopoietic prostaglandin D2 synthase. Conclusion: This study provided genome wide molecular signatures of Korean acute leukemia patients, which clearly identify AML and ALL. Given with other reported signatures, these molecular signatures provide a means of achieving a molecular diagnosis in Korean acute leukemia patents.

Inhibitory effect of Ssanghwa-tang on bone loss in ovariectomized rats

  • Shim, Ki-Shuk;Lee, Ji-Hye;Ma, Choong-Je;Lee, Yoon-Hee;Choi, Sung-Up;Lee, Jae-Hoon;Ma, Jin-Yeul
    • Animal cells and systems
    • /
    • v.14 no.4
    • /
    • pp.283-289
    • /
    • 2010
  • Ssanghwa-tang (SHT) is a traditional Korean herbal medicine widely prescribed to decrease fatigue following an illness. The purpose of this study was to investigate the effects of SHT on osteoclast differentiation in vitro, and on bone loss in ovariectomized (OVX) rats in vivo. SHT significantly reduced the receptor activator for the nuclear factor ${\kappa}B$ (NF-${\kappa}B$) ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP) activity, and multinucleated osteoclast formation in RAW264.7 cells without affecting cell viability. In addition, SHT significantly attenuated RANKL-induced mRNA expression levels of c-Src and cathepsin K. To examine the in vivo effect of SHT on OVX-induced bone loss in OVX rats, we administered SHT (0.6 g/kg BID) orally to OVX rats for 12 weeks. SHT administration significantly blocked OVX-induced decrease of femoral bone mineral density (BMD) and femoral trabeculae in OVX rats. In conclusion, these results suggest that SHT treatment effectively prevents OVX-induced bone loss, and this effect may result from its inhibitory effect on osteoclast differentiation.

Suppression of Rice Stripe Virus Replication in Laodelphax striatellus Using Vector Insect-Derived Double-Stranded RNAs

  • Fang, Ying;Choi, Jae Young;Park, Dong Hwan;Park, Min Gu;Kim, Jun Young;Wang, Minghui;Kim, Hyun Ji;Kim, Woo Jin;Je, Yeon Ho
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.280-288
    • /
    • 2020
  • RNA interference (RNAi) has attracted attention as a promising approach to control plant viruses in their insect vectors. In the present study, to suppress replication of the rice stripe virus (RSV) in its vector, Laodelphax striatellus, using RNAi, dsRNAs against L. striatellus genes that are strongly upregulated upon RSV infection were delivered through a rice leaf-mediated method. RNAi-based silencing of peroxiredoxin, cathepsin B, and cytochrome P450 resulted in significant down regulation of the NS3 gene of RSV, achieving a transcriptional reduction greater than 73.6% at a concentration of 100 ng/μl and, possibly compromising viral replication. L. striatellus genes might play crucial roles in the transmission of RSV; transcriptional silencing of these genes could suppress viral replication in L. striatellus. These results suggest effective RNAi-based approaches for controlling RSV and provide insight into RSV-L. striatellus interactions.

Vav1 inhibits RANKL-induced osteoclast differentiation and bone resorption

  • Jang, Jin Sun;Kang, In Soon;Cha, Young-Nam;Lee, Zang Hee;Dinauer, Mary C;Kim, Young-June;Kim, Chaekyun
    • BMB Reports
    • /
    • v.52 no.11
    • /
    • pp.659-664
    • /
    • 2019
  • Vav1 is a Rho/Rac guanine nucleotide exchange factor primarily expressed in hematopoietic cells. In this study, we investigated the potential role of Vav1 in osteoclast (OC) differentiation by comparing the ability of bone marrow mononuclear cells (BMMCs) obtained from Vav1-deficient ($Vav1^{-/-}$) and wild-type (WT) mice to differentiate into mature OCs upon stimulation with macrophage colony stimulating factor and receptor activator of nuclear kappa B ligand in vitro. Our results suggested that Vav1 deficiency promoted the differentiation of BMMCs into OCs, as indicated by the increased expression of tartrate-resistant acid phosphatase, cathepsin K, and calcitonin receptor. Therefore, Vav1 may play a negative role in OC differentiation. This hypothesis was supported by the observation of more OCs in the femurs of $Vav1^{-/-}$ mice than in WT mice. Furthermore, the bone status of $Vav1^{-/-}$ mice was analyzed in situ and the femurs of $Vav1^{-/-}$ mice appeared abnormal, with poor bone density and fewer number of trabeculae. In addition, Vav1-deficient OCs showed stronger adhesion to vitronectin, an ${\alpha}_v{\beta}_3$ integrin ligand important in bone resorption. Thus, Vav1 may inhibit OC differentiation and protect against bone resorption.

Vaccinium oldhamii Stems Inhibit Pro-inflammatory Response and Osteoclastogenesis through Inhibition of NF-κB and MAPK/ATF2 Signaling Activation in LPS-stimulated RAW264.7 Cells

  • Park, Su Bin;Kim, Ha Na;Kim, Jeong Dong;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.67-67
    • /
    • 2019
  • Vaccinium oldhamii (V. oldhamii) has been reported to exert a variety of the pharmacological properties such as anti-oxidant activity, anti-cancer activity, and inhibitory activity of ${\alpha}$-amylase and acetylcholinesterase. However, the anti-inflammatory activity of V. oldhamii has not been studied. In this study, we aimed to investigate anti-inflammatory activity of the stem extracts from V. oldhamii, and to elucidate the potential mechanisms in LPS-stimulated RAW264.7 cells. Among VOS, VOL and VOF, the inhibitory effect of NO and PGE2 production induced by LPS was highest in VOS treatment. Thus, VOS was selected for the further study. VOS dose-dependently blocked LPS-induced NO and PGE2 production by inhibiting iNOS and COX-2 expression, respectively. VOS inhibited the expression of pro-inflammatory cytokines such as $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$. In addition, VOS suppressed TRAP activity and attenuated the expression of the osteoclast-specific genes such as NFATc1, c-FOS, TRAP, MMP-9, cathepsin K, CA2, OSCAR and ATPv06d2. VOS inhibited LPS-induced $NF-{\kappa}B$ signaling activation through blocking $I{\kappa}B-{\alpha}$ degradation and p65 nuclear accumulation. VOS inhibited MAPK signaling activation by attenuating the phosphorylation of ERK1/2, p38 and JNK. Furthermore, VOS inhibited ATF2 phosphorylation and blocked ATF2 nuclear accumulation. From these findings, VOS has potential to be a candidate for the development of chemopreventive or therapeutic agents for the inflammatory diseases.

  • PDF

Lysophosphatidylcholine Enhances Bactericidal Activity by Promoting Phagosome Maturation via the Activation of the NF-κB Pathway during Salmonella Infection in Mouse Macrophages

  • Lee, Hyo-Ji;Hong, Wan-Gi;Woo, Yunseo;Ahn, Jae-Hee;Ko, Hyun-Jeong;Kim, Hyeran;Moon, Sungjin;Hahn, Tae-Wook;Jung, Young Mee;Song, Dong-Keun;Jung, Yu-Jin
    • Molecules and Cells
    • /
    • v.43 no.12
    • /
    • pp.989-1001
    • /
    • 2020
  • Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that causes salmonellosis and mortality worldwide. S. Typhimurium infects macrophages and survives within phagosomes by avoiding the phagosome-lysosome fusion system. Phagosomes sequentially acquire different Rab GTPases during maturation and eventually fuse with acidic lysosomes. Lysophosphatidylcholine (LPC) is a bioactive lipid that is associated with the generation of chemoattractants and reactive oxygen species (ROS). In our previous study, LPC controlled the intracellular growth of Mycobacterium tuberculosis by promoting phagosome maturation. In this study, to verify whether LPC enhances phagosome maturation and regulates the intracellular growth of S. Typhimurium, macrophages were infected with S. Typhimurium. LPC decreased the intracellular bacterial burden, but it did not induce cytotoxicity in S. Typhimurium-infected cells. In addition, combined administration of LPC and antibiotic significantly reduced the bacterial burden in the spleen and the liver. The ratios of the colocalization of intracellular S. Typhimurium with phagosome maturation markers, such as early endosome antigen 1 (EEA1) and lysosome-associated membrane protein 1 (LAMP-1), were significantly increased in LPC-treated cells. The expression level of cleaved cathepsin D was rapidly increased in LPC-treated cells during S. Typhimurium infection. Treatment with LPC enhanced ROS production, but it did not affect nitric oxide production in S. Typhimurium-infected cells. LPC also rapidly triggered the phosphorylation of IκBα during S. Typhimurium infection. These results suggest that LPC can improve phagosome maturation via ROS-induced activation of NF-κB pathway and thus may be developed as a therapeutic agent to control S. Typhimurium growth.

Different Effect of Sodium Chloride Replacement with Calcium Chloride on Proteolytic Enzyme Activities and Quality Characteristics of Spent Hen Samgyetang

  • Barido, Farouq Heidar;Lee, Sung Ki
    • Food Science of Animal Resources
    • /
    • v.41 no.5
    • /
    • pp.869-882
    • /
    • 2021
  • Sodium chloride (NaCl) replacement with calcium chloride (CaCl2) effect on protein solubility, proteolytic enzyme and quality characteristics of a chicken soup prepared from spent hen (SH) chicken were investigated. By means of immerse marination prior to cooking, a total of 60 skinless SH breast meat were randomly allocated into ten groups admitted to treatments with marinade solution containing sodium tripolyphosphate (STPP) and reduced percentage of NaCl with CaCl2 at 0%, 25%, 50%, 75%, and 100% at 4±2℃ for 20 h. STPP was adjusted to 0.5% for all treatments and NaCl replacement at 0% was used as control. The different methods, particularly boiling at 100℃ and retorting at 121℃, 1.5 kgf/cm2 for 60 minutes, were applied following marination. An upregulation of cathepsin-B and caspase-3 enzymes were a consequences from a higher percentage of CaCl2 within meat environment. Accordingly, modified the protein solubility in particular the myofibrillar and total protein solubility. In addition, a significant increase in water holding capacity (WHC), pH value, myofibril fragmentation index (MFI), and moisture content was obtained due to salt replacement (p<0.05). Limited effect was observed for shear force value, collagen content and cooking yield. Eventually, this study implied that although protelytic enzyme and protein solubility was upregulated by the replacement of NaCl with CaCl2 at >75%, extensive effect on texture properties was not observed. Therefore, NaCl replacement at 75% could be a promising strategy for quality improvement of SH chicken soup.