DOI QR코드

DOI QR Code

Inhibitory effect of Ssanghwa-tang on bone loss in ovariectomized rats

  • Shim, Ki-Shuk (Center for Herbal Medicine Improvement Research, Korea Institute of Oriental Medicine) ;
  • Lee, Ji-Hye (Center for Herbal Medicine Improvement Research, Korea Institute of Oriental Medicine) ;
  • Ma, Choong-Je (Department of Biomaterials Engineering, Kangwon National University) ;
  • Lee, Yoon-Hee (Center for Herbal Medicine Improvement Research, Korea Institute of Oriental Medicine) ;
  • Choi, Sung-Up (Center for Herbal Medicine Improvement Research, Korea Institute of Oriental Medicine) ;
  • Lee, Jae-Hoon (Center for Herbal Medicine Improvement Research, Korea Institute of Oriental Medicine) ;
  • Ma, Jin-Yeul (Center for Herbal Medicine Improvement Research, Korea Institute of Oriental Medicine)
  • Received : 2010.05.25
  • Accepted : 2010.09.29
  • Published : 2010.12.31

Abstract

Ssanghwa-tang (SHT) is a traditional Korean herbal medicine widely prescribed to decrease fatigue following an illness. The purpose of this study was to investigate the effects of SHT on osteoclast differentiation in vitro, and on bone loss in ovariectomized (OVX) rats in vivo. SHT significantly reduced the receptor activator for the nuclear factor ${\kappa}B$ (NF-${\kappa}B$) ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP) activity, and multinucleated osteoclast formation in RAW264.7 cells without affecting cell viability. In addition, SHT significantly attenuated RANKL-induced mRNA expression levels of c-Src and cathepsin K. To examine the in vivo effect of SHT on OVX-induced bone loss in OVX rats, we administered SHT (0.6 g/kg BID) orally to OVX rats for 12 weeks. SHT administration significantly blocked OVX-induced decrease of femoral bone mineral density (BMD) and femoral trabeculae in OVX rats. In conclusion, these results suggest that SHT treatment effectively prevents OVX-induced bone loss, and this effect may result from its inhibitory effect on osteoclast differentiation.

Keywords

References

  1. Asagiri M, Takayanagi H. 2007. The molecular understanding of osteoclast differentiation. Bone. 40:251-264. https://doi.org/10.1016/j.bone.2006.09.023
  2. Boyle WJ, Simonet WS, Lacey DL. 2003. Osteoclast differentiation and activation. Nature. 423:337-342. https://doi.org/10.1038/nature01658
  3. Branca F. 2003. Dietary phyto-oestrogens and bone health. Proc Nutr Soc. 62:877-887. https://doi.org/10.1079/PNS2003309
  4. Garcia Palacios V, Robinson LJ, Borysenko CW, Lehmann T, Kalla SE, Blair HC. 2005. Negative regulation of RANKL-induced osteoclastic differentiation in RAW 264.7 cells by estrogen and phytoestrogens. J Biol Chem. 280:13720-13727. https://doi.org/10.1074/jbc.M410995200
  5. Han DS, Lee HK, Cho HJ. 1983. Analgesic and anticonvulsionary effects of Ssanghwa-Tang. Kor J Pharmacog. 14:60-63.
  6. Han YH, Shim CK. 1989. Effect of a blended Korean herbal remedy, Ssang Wha Tang, on the liver cytoplasmic protein binding of sulfobromophthalein in rats. Phytother Res. 3:109-111. https://doi.org/10.1002/ptr.2650030309
  7. Heo J. 1994. Dongeuibogam. Seoul: Namsandang Press. p. 670-675.
  8. Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan HL, Elliott G, Kelley MJ, Sarosi I, et al. 1999. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA. 96:3540-3545. https://doi.org/10.1073/pnas.96.7.3540
  9. Kalu DN. 1991. The ovariectomized rat model of postmenopausal bone loss. Bone Miner. 15:175-191. https://doi.org/10.1016/0169-6009(91)90124-I
  10. Kil JS, Kim MG, Choi HM, Lim JP, Boo Y, Kim EH, Kim JB, Kim HK, Leem KH. 2008. Inhibitory effects of Angelicae Gigantis Radix on osteoclast formation. Phytother Res. 22:472-476. https://doi.org/10.1002/ptr.2342
  11. Kim IH, Hwang KJ. 1981. Studies on the anti-inflammtory activities of Ssangwha-tang. Natural Pro Sci. 12:131-136.
  12. Lee H, Lim HH. 2003. Effects of Ssangwha-tang added to Cervi Cornu Parvum on bone density and bone biochemical marker in ovariectomized rats. J Ori R Med. 13:45-67.
  13. Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA. 2008. The laboratory rat as an animal model for osteoporosis research. Comp Med. 58:424-430.
  14. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}{CT}}$ method. Methods. 25:402-408. https://doi.org/10.1006/meth.2001.1262
  15. Lowe C, Yoneda T, Boyce BF, Chen H, Mundy GR, Soriano P. 1993. Osteoporosis in Src-deficient mice is due to an autonomous defect of osteoclasts. Proc Natl Acad Sci USA. 90:4485-4489. https://doi.org/10.1073/pnas.90.10.4485
  16. Oh KO, Kim SW, Kim JY, Ko SY, Kim HM, Baek JH, Ryoo HM, Kim JK. 2003. Effect of Rehmannia glutinosa Libosch extracts on bone metabolism. Clin Chim Acta. 334:185-195. https://doi.org/10.1016/S0009-8981(03)00238-9
  17. Okamoto F, Okabe K, Kajiya H. 2001. Genistein, a soybean isoflavone, inhibits inward rectifier K(+) channels in rat osteoclasts. Jpn J Physiol. 51:501-509. https://doi.org/10.2170/jjphysiol.51.501
  18. Pang M, Martinez AF, Fernandez I, Balkan W, Troen BR. 2007. AP-1 stimulates the cathepsin K promoter in RAW 264.7 cells. Gene. 15:151-158.
  19. Putnam SE, Scutt AM, Bicknell K, Priestley CM,Williamson EM. 2007. Natural products as alternative treatments for metabolic bone disorders and for maintenance of bone health. Phytother Res. 21:99-112. https://doi.org/10.1002/ptr.2030
  20. Qin L, Han T, Zhang Q, Cao D, Nian H, Rahman K, Zheng H. 2008. Antiosteoporotic chemical constituents from Er-Xian Decoction, a traditional Chinese herbal formula. J Ethnopharmacol. 118:271-279. https://doi.org/10.1016/j.jep.2008.04.009
  21. Rodan GA, Martin TJ. 2000. Therapeutic approaches to bone diseases. Science. 289:1508-1514. https://doi.org/10.1126/science.289.5484.1508
  22. Rozen S, Skaletsky HJ. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 132:365-386.
  23. Saftig P, Hunziker E, Everts V, Jones S, Boyde A, Wehmeyer O, Suter A, von Figura K. 2000. Functions of cathepsin K in bone resorption. Lessons from cathepsin K deficient mice. Adv Exp Med Biol. 477:293-303.
  24. Soriano P, Montgomery C, Geske R, Bradley A. 1991. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64:693-702. https://doi.org/10.1016/0092-8674(91)90499-O
  25. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, et al. 2002. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 3:889-901. https://doi.org/10.1016/S1534-5807(02)00369-6
  26. Teitelbaum SL. 2000. Bone resorption by osteoclasts. Science. 289:1504-1508. https://doi.org/10.1126/science.289.5484.1504
  27. Won JB, Ma JY, Um YR, Ma CJ. 2010. Simultaneous determination of five marker constituents in Ssanghwa tang by HPLC/DAD. Pharmacogn Mag 6:111-115. https://doi.org/10.4103/0973-1296.62896
  28. Yen PH, Kiem PV, Nhiem NX, Tung NH, Quang TH, Minh CV, Kim JW, Choi EM, Kim YH. 2007. A new monoterpene glycoside from the roots of Paeonia lactiflora increases the differentiation of osteoblastic MC3T3-E1 cells. Arch Pharm Res. 30:1179-1185. https://doi.org/10.1007/BF02980258

Cited by

  1. Dangguijakyak-san protects dopamine neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity under postmenopausal conditions vol.139, pp.3, 2010, https://doi.org/10.1016/j.jep.2011.12.015
  2. Ssanghwa-tang, an oriental herbal cocktail, exerts anti-melanogenic activity by suppression of the p38 MAPK and PKA signaling pathways in B16F10 cells vol.13, pp.None, 2010, https://doi.org/10.1186/1472-6882-13-214
  3. Osteoclast differentiation inhibitors: a patent review (2008 - 2012) vol.23, pp.12, 2010, https://doi.org/10.1517/13543776.2013.842556
  4. Ssanghwa-Tang, a traditional herbal formula, suppresses cigarette smoke-induced airway inflammation via inhibition of MMP-9 and Erk signaling vol.13, pp.3, 2017, https://doi.org/10.1007/s13273-017-0033-6
  5. A 4-Week Repeated Oral Dose Toxicity Study of Ssanghwa-Tang in Crl:CD Sprague Dawley Rats vol.2019, pp.None, 2010, https://doi.org/10.1155/2019/2135351