References
- Katzav S, Martin-Zanca D, Barbacid M (1989) vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoietic cells. EMBO J 8, 2283-2290 https://doi.org/10.1002/j.1460-2075.1989.tb08354.x
-
Gakidis MA, Cullere X, Olson T et al (2004) Vav GEFs are required for
${\beta}2$ integrin-dependent functions of neutrophils. J Cell Biol 166, 273-282 https://doi.org/10.1083/jcb.200404166 - Krawczyk C, Oliveira-dos-Santos A, Sasaki T et al (2002) Vav1 controls integrin clustering and MHC/peptidespecific cell adhesion to antigen-presenting cells. Immunity 16, 331-343 https://doi.org/10.1016/S1074-7613(02)00291-1
- Turner M and Billadeau DD (2002) VAV proteins as signal integrators for multi-subunit immune-recognition receptors. Nat Rev Immunol 2, 476-486 https://doi.org/10.1038/nri840
-
Pearce AC, McCarty OJ, Calaminus SD, Vigorito E, Turner M, Watson SP (2007) Vav family proteins are required for optimal regulation of
$PLC{\gamma}2$ by integrin${\alpha}IIb{\beta}3$ . Biochem J 401, 753-761 https://doi.org/10.1042/BJ20061508 -
Garcia-Bernal D, Wright N, Sotillo-Mallo E et al (2005) Vav1 and Rac control chemokine-promoted T lymphocyte adhesion mediated by the integrin
${\alpha}4{\beta}1$ . Mol Biol Cell 16, 3223-3235 https://doi.org/10.1091/mbc.e04-12-1049 - del Pozo MA, Schwartz MA, Hu J, Kiosses WB, Altman A, Villalba M (2003) Guanine exchange-dependent and -independent effects of Vav1 on integrin-induced T cell spreading. J Immunol 170, 41-47 https://doi.org/10.4049/jimmunol.170.1.41
- Spurrell DR, Luckashenak NA, Minney DC et al (2009) Vav1 regulates the migration and adhesion of dendritic cells. J Immunol 183, 310-318 https://doi.org/10.4049/jimmunol.0802096
- Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21, 115-137 https://doi.org/10.1210/edrv.21.2.0395
- Koh JM (2018) Osteoclast-derived SLIT3 is a coupling factor linking bone resorption to bone formation. BMB Rep 51, 263-264 https://doi.org/10.5483/BMBRep.2018.51.6.109
- Roodman GD (1996) Advances in bone biology: the osteoclast. Endocr Rev 17, 308-332 https://doi.org/10.1210/edrv-17-4-308
- Athanasou NA (1996) Cellular biology of bone-resorbing cells. J Bone Joint Surg Am 78, 1096-1112 https://doi.org/10.2106/00004623-199607000-00016
- Vaananen HK and Laitala-Leinonen T (2008) Osteoclast lineage and function. Arch Biochem Biophys 473, 132-138 https://doi.org/10.1016/j.abb.2008.03.037
- Holtrop ME and King GJ (1977) The ultrastructure of the osteoclast and its functional implications. Clin Orthop Relat Res 123, 177-196
-
Nesbitt S, Nesbit A, Helfrich M, Horton M (1993) Biochemical characterization of human osteoclast integrins. Osteoclasts express
${\alpha}v{\beta}3$ ,${\alpha}2{\beta}1$ , and${\alpha}v{\beta}1$ integrins. J Biol Chem 268, 16737-16745 https://doi.org/10.1016/S0021-9258(19)85479-0 - Mellis DJ, Itzstein C, Helfrich MH, Crockett JC (2011) The skeleton: a multi-functional complex organ: the role of key signalling pathways in osteoclast differentiation and in bone resorption. J Endocrinol 211, 131-143 https://doi.org/10.1530/JOE-11-0212
- Faccio R, Teitelbaum SL, Fujikawa K et al (2005) Vav3 regulates osteoclast function and bone mass. Nat Med 11, 284-290 https://doi.org/10.1038/nm1194
- Saftig P, Hunziker E, Wehmeyer O et al (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci 95, 13453-13458 https://doi.org/10.1073/pnas.95.23.13453
- Hattersley G and Chambers TJ (1989) Calcitonin receptors as markers for osteoclastic differentiation: correlation between generation of bone-resorptive cells and cells that express calcitonin receptors in mouse bone marrow cultures. Endocrinol 125, 1606-1612 https://doi.org/10.1210/endo-125-3-1606
- Perilli E, Baleani M, Ohman C, Fognani R, Baruffaldi F, Viceconti M (2008) Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur. J Biomech 41, 438-446 https://doi.org/10.1016/j.jbiomech.2007.08.003
- Hotokezaka H, Sakai E, Kanaoka K et al (2002) U0126 and PD98059, specific inhibitors of MEK, accelerate differentiation of RAW264.7 cells into osteoclast-like cells. J Biol Chem 277, 47366-47372 https://doi.org/10.1074/jbc.M208284200
- Li X, Udagawa N, Itoh K et al (2002) p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function. Endocrinol 143, 3105-3113 https://doi.org/10.1210/endo.143.8.8954
- Matsumoto M, Sudo T, Saito T, Osada H, Tsujimoto M (2000) Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J Biol Chem 275, 31155-31161 https://doi.org/10.1074/jbc.M001229200
- Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423, 337-342 https://doi.org/10.1038/nature01658
- Walsh MC, Kim N, Kadono Y et al (2006) Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol 24, 33-63 https://doi.org/10.1146/annurev.immunol.24.021605.090646
- Tybulewicz VL, Ardouin L, Prisco A, Reynolds LF (2003) Vav1: a key signal transducer downstream of the TCR. Immunol Rev 192, 42-52 https://doi.org/10.1034/j.1600-065X.2003.00032.x
- Movilla N, Dosil M, Zheng Y, Bustelo XR (2001) How Vav proteins discriminate the GTPases Rac1 and RhoA from Cdc42. Oncogene 20, 8057-8065 https://doi.org/10.1038/sj.onc.1205000
-
Lee NK, Choi HK, Kim DK, Lee SY (2006) Rac1 GTPase regulates osteoclast differentiation through TRANCE-induced
$NF-{\kappa}B$ activation. Mol Cell Biochem 281, 55-61 https://doi.org/10.1007/s11010-006-0333-y - Movilla N and Bustelo XR (1999) Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins. Mol Cell Biol 19, 7870-7885 https://doi.org/10.1128/MCB.19.11.7870
- Wang Y, Lebowitz D, Sun C, Thang H, Grynpas MD, Glogauer M (2008) Identifying the relative contributions of Rac1 and Rac2 to osteoclastogenesis. J Bone Miner Res 23, 260-270 https://doi.org/10.1359/jbmr.071013
- Roberts AW, Kim C, Zhen L et al (1999) Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 10, 183-196 https://doi.org/10.1016/S1074-7613(00)80019-9
- Huang S, Eleniste PP, Wayakanon K et al (2013) The Rho-GEF Kalirin regulates bone mass and the function of osteoblasts and osteoclasts. Bone 60, 235-245 https://doi.org/10.1016/j.bone.2013.12.023
- Bustelo XR (2001) Vav proteins, adaptors and cell signaling. Oncogene 20, 6372-6381 https://doi.org/10.1038/sj.onc.1204780
- Fischer KD, Kong YY, Nishina H et al (1998) Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor. Curr Biol 8, 554-562 https://doi.org/10.1016/S0960-9822(98)70224-6
- Kang IS and Kim C (2016) NADPH oxidase gp91phox contributes to RANKL-induced osteoclast differentiation by upregulating NFATc1. Sci Rep 6, 38014 https://doi.org/10.1038/srep38014
- Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25, 1468-1486 https://doi.org/10.1002/jbmr.141
- Kim C and Dinauer MC (2001) Rac2 is an essential regulator of neutrophil nicotinamide adenine dinucleotide phosphate oxidase activation in response to specific signaling pathways. J Immunol 166, 1223-1232 https://doi.org/10.4049/jimmunol.166.2.1223