• 제목/요약/키워드: Catchment

검색결과 703건 처리시간 0.025초

Estimations on the Water Purification of Forest by Analyzing Water Quality Variations in Forest Hydrological Processes (산지(山地) 물순환(循環) 소과정(素過程)에 있어서 수질변화(水質變化)의 추적분석(追跡分析)에 의한 산림(山林)의 환경적(環境的) 정화기능(淨化機能)의 계량화(計量化) 연구(硏究))

  • Lee, Heon-Ho
    • Journal of Korean Society of Forest Science
    • /
    • 제86권1호
    • /
    • pp.56-68
    • /
    • 1997
  • This study was carried out to evaluate the capacity of environment purification of forest and to reveal formation processes of stream water quality by evaluating water quality variations in forest hydrological processes. Water quantity, pH, electric conductivity(EC), dissolved oxygen(DO), and dissolved matter concentrations were monitored in open rainfall, throughfall, stemflow, litter flow and short-term stream flow for one unit storm, and also for those were monitored in long-term stream flow in Palgong, Yongsung, and Daedong catchments. The results were summarized as follows; 1. pH and DO values of stream flow were increased as the flux increased but EC values were decreased. 2. pH values of stemflow and throughfall were decreased with the lapse of rainfall time with lower values than open rainfall. Arid EC values were higher in initial rainfall period but lower gradually with the lapse of time than open rainfall. In litter flow, pH values were lower than open rainfall but EC values were higher. In stream flow, pH values of stream flow showed a high level in initial rainfall period and decreased remarkably with the lapse of time, but it recovered after the rainfall stopped. And however, the values of EC showed almost reverse tendency. DO values of litter flow and stream flow were decreased gradually with the lapse of time in litter flow and stream flow but there were no any tendency in open rainfall, stemflow and throughfall. 3. pH values of stemflow and throughfall in Quercus acutissima were higher than in Pinus densiflora, but EC values were lower. Total amount of canons in stemflow was higher in Pinus densiflora than in Quercus acutissima. 4. pH, DO, EC and total amount of cation values in hydrological processes were in the order of; litter flow

  • PDF

Studies on the Overflow from Torrential Stream -A Case Study at the Samsung-cheon in Mt. Kwanak- (야계(野溪)의 월류발생(越流發生)에 관(關)한 연구(硏究) -관악산(冠岳山) 삼성천(三聖川)에서의 시험사례(試驗事例)-)

  • Woo, Bo Myeong;Kim, Kyong Ha;Jeong, Do Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • 제77권3호
    • /
    • pp.269-275
    • /
    • 1988
  • To investigate the cause of overflow in the torrential stream, the estimated peak flow of run-off and the maximum tarring capacity of the stream were measured at the upstream of Samsung-cheon located in Kwanak Aboretum during July, 1987. The results obtained from this study could be summarized as follows : 1. The surveyed catchment area was 477ha, which was 116 of the designed area (410ha) by the plan. 2. The maximum rainfall intensity measured was 99.5mm/hr and was almost same as the designed intensity(100mm/hr). 3. The surveyed run-off coefficient was 0.672 that was about twice as much as designed one(0.35). 4. The surveyed peak flow of run-off was $88.59m^3/sec$, 222% as large the designed one($39.9m^3/sec$). 5. The designed cross-sectional area of the stream was $17.25m^2$, which was 68% of the designed one$25.43m^2$. 6. The surveyed hydraulic mean radius was 0.94m, which was shorter than the designed one(1.28m). 7. The surveyed mean stream-bed gradient(0.998%) was almost the same as the designed one(1.00%). 8 The surveyed maximum velocity of flow passing through the stream was 2.87m/sec, 78.0 of the designed one(3.68m/sec). 9 The surveyed run-off capacity of the stream was $49.51m^3/sec$, 53% of the designed one ($93.5m^3/sec$).

  • PDF

Comparison of nutrient removal efficiency of an infiltration planter and an infiltration trench (침투도랑(IT)과 침투화분(IP)의 영양염류 저감효율 비교분석)

  • Yano, K.A.V.;Geronimo, F.K.F.;Reyes, N.J.D.G.;Jeon, Minsu;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • 제21권4호
    • /
    • pp.384-391
    • /
    • 2019
  • Nutrients in stormwater runoff have raised concerns regarding water quality degradation in the recent years. Low impact development (LID) technologies are types of nature-based solutions developed to address water quality problems and restore the predevelopment hydrology of a catchment area. Two LID facilities, infiltration trench (IT) and infiltration planter (IP), are known for their high removal rate of nutrients through sedimentation and vegetation. Long-term monitoring was conducted to assess the performance and cite the advantages and disadvantages of utilizing the facilities in nutrient removal. Since a strong ionic bond exists between phosphorus compounds and sediments, reduction of total phosphorus (TP) (more than 76%), in both facilities was associated to the removal of total suspended solids (TSS) (more than 84%). The efficiency of nitrogen in IP is 28% higher than IT. Effective nitrification occurred in IT and particulate forms of nitrogen were removed through sedimentation and media filters. Decrease in ammonium- nitrogen (NH4-N) and nitrite-nitrogen (NO2-N), and increase in nitrate-nitrogen (NO3-N) fraction forms indicated that effective nitrification and denitrification occurred in IP. Hydrologic factors such as rainfall depth and rainfall intensity affected nutrient treatment capabilities of urban stormwater LID facilities The greatest monitored rainfall intensity of 11 mm/hr for IT yielded to 34% and 55% removal efficiencies for TN and TP, respectively, whereas, low rainfall intensities below 5 mm resulted to 100 % removal efficiency. The greatest monitored rainfall intensity for IP was 27 mm/hr, which still resulted to high removal efficiencies of 98% and 97% for TN and TP, respectively. Water quality assessment showed that both facilities were effective in reducing the amount of nutrients; however, IP was found to be more efficient than IT due to its additional provisions for plant uptake and larger storage volume.

Limnological Characteristics and Influences of Free-floating Plants on the Woopo Wetland during the Summer (하계우포습지의 육수학적 특성 및 부유수생식물의 영향)

  • Joo, Gea-Jae;Kim, Gu-Yeon;Park, Sung-Bae;Lee, Chan-Woo;Choi, Sang-Ho
    • Korean Journal of Ecology and Environment
    • /
    • 제35권4호통권100호
    • /
    • pp.273-284
    • /
    • 2002
  • During January 1998-October 1999, the impact of free-floating plants (FFP) on limnology of the wetland ecosystem was evaluated through the investigation of physicochemical characteristics of the Woopo Wetland along with in situ manipulation experiments of aquatic plants. Flooding events occurred in the wetland during the summer period (Jun.-Aug.) and water levels rose to 2-3 m due to precipitation from the catchment and inflow from the main channel of the Nakdong River. Physicochemical parameters and plankton dynamics in the wetland during the summer were greatly influenced by floods and growth of free-floating plants. Dissolved oxygen (Jun.-Sept., 4.5${\pm}$2.5 mg/1; Oct.-May, 8,1 ${\pm}$4.0 mg/1) and pH (Jun.-Sept., 6.9${\pm}$0.4; Oct.-May,7.4${\pm}$0.8) levels were significantly lower during the summer than any other seasons. Three types of enclosure experiments (100 L, treatments with floating plants, screened and opened) were conducted under the presence and absence of sediment for 15 days in the 1999 summer. The treatments with sediment had higher levels of nutrient concentrations than those of the others. Among the treatments with sediment, nutrient concentrations in the treatments with free-floating plants were higher than the others. Zooplankton communities in each treatment showed a similar variation, although the scale of zooplankton densities differed. Rotifer community dominated the zooplankton at the initial phase of the experiment, but decreased drastically along with an increase of cladoceran and copepod communities. In conclusion, low levels of dissolved oxygen and pH in the Woopo Wetland during the summer seemed to be caused by a proliferation of free-floating plants and active decomposition process at the bottom of the sediment.

Estimation of the Total Terrestrial Organic Carbon Flux of Large Rivers in Korea using the National Water Quality Monitoring System (수질측정망을 이용한 국내 대하천 하구를 통한 총유기탄소 유출량 산정과 비교)

  • Park, Hyung-Geun;Ock, Giyoung
    • Korean Journal of Environmental Biology
    • /
    • 제35권4호
    • /
    • pp.549-556
    • /
    • 2017
  • Rivers continuously transport terrestrial organic carbon matter to the estuary and the ocean, and they play a critical role in productivity and biodiversity in the marine ecosystem as well as the global carbon cycle. The amount of terrestrial organic carbon transporting from the rivers to ocean is an essential piece of information, not only for the marine ecosystem management but also the carbon budget within catchment. However, this phenomenon is still not well understood. Most large rivers in Korea have a well-established national monitoring system of the river flow and the TOC (Total Organic Carbon) concentration from the mountain to the river mouth, which are fundamental for estimating the amount of the TOC flux. We estimated the flux of the total terrestrial organic carbon of five large rivers which flow out to the Yellow Sea, using the data of the national monitoring system (the monthly mean TOC concentration and the monthly runoff of river flow). We quantified the annual TOC flux of the five rivers, showing their results in the following order: the Han River ($18.0{\times}10^9gC\;yr^{-1}$)>>Geum River ($5.9{\times}10^9gC\;yr^{-1}$)>Yeongsan River ($2.6{\times}10^9gC\;yr^{-1}$)>Sumjin River ($2.0{\times}10^9gC\;yr^{-1}$)>>Tamjin River ($0.2{\times}10^9gC\;yr^{-1}$). The amount of the Han River, which is the highest in the Korean rivers, corresponds to be 4% of the annual total TOC flux of in the Yellow River, and moreover, to be 0.6% of Yangtze River.

Difference of Somatic Symptoms between Anxiety Disorder and Major Depressive Disorder and Their Domainal Association with Suicidal Idealization, Plan and Attempts (불안 장애와 주요우울장애에서 나타나는 신체 증상과 증상군에 따른 자살 사고, 계획, 행동과의 관계 고찰)

  • Ahn, Jun Seok;Kim, Eun young;Cho, Maeng Je;Hong, Jin Pyo;Hahm, Bong-Jin;Chung, In-Won;Ahn, Joon-Ho;Jeon, Hong Jin;Seong, Su Jeong;Lee, Dong-Woo
    • Korean Journal of Psychosomatic Medicine
    • /
    • 제24권2호
    • /
    • pp.174-183
    • /
    • 2016
  • Objectives : The aim of this study is to evaluate difference of somatic symptoms of anxiety disorder and major depressive disorder and domainal association with suicidal idealization, plan, and attempts. Methods : A total of 359 adults diagnosed with major depressive disorder and anxiety disorder of last one year participated. Participants interviewed with certain sections of Korean version of Composite International Diagnostic interview of CIDI. Sections of interests includes questionnaires regarding somatic symptoms and suicidal idea, plan and attempts of last one year. Results : Chest pain shows more prevalence in major depressive disorder. Symptoms of Headache and loose stool are more prevalent in anxiety disorder. Difficulty in equilibrium and fainting spells are more common somatic complaints of co-diagnosis states of anxiety disorder and major depressive disorder. Comparing 3 domains of pain symptoms, gastrointestinal symptoms and pseudo-neurological symptoms, pain symptom domains, gastrointestinal symptoms domain shows significant statistic difference between diagnosis. Average somatic symptom numbers of each symptom domains increase through suicidal idealization, plan and attempt, accordingly. Conclusions : Our finding shows some of somatic symptoms are more prevalent at certain diagnosis. Since increasing numbers of somatic complaints of each symptom domains goes with the suicidal idealization to suicidal attempts, proper psychiatric evaluation and consultations are crucial for patients with numerous somatic complaints in non-psychiatric clinical settings.

Spatial and Temporal Distribution of Zooplankton Communities in Lake Paldang (팔당호 동물플랑크톤 군집의 시공간적 분포)

  • Sim, Youn-Bo;Jeong, Hyun-Gi;Im, Jong-Kwon;Youn, Seok-Jea;Byun, Myeong-Seop;Yoo, Soon-Ju
    • Korean Journal of Ecology and Environment
    • /
    • 제51권4호
    • /
    • pp.287-298
    • /
    • 2018
  • The zooplankton community and environmental factor were investigated on a weekly basis from March to November 2015 in Lake Paldang, Korea. The seasonal succession of zooplankton community structure was influenced by hydraulic and hydrological factors such as inflow, outflow and rainfall. However, the hydraulic retention time in 2015 (16.3 day) was affected by the periods of water shortage that had continued since 2014 and increased substantially compared to 2013 (7.3 day). Therefore, the inflow and outflow discharge were decreased, and the water quality (COD, BOD, TOC, TP, Chl-a) of Lake Paldang (St.1) was the same characteristics as the river type Bukhan river (St.3), compared with the lake type Namhan river (St.2) and Gyeongan stream (St.4). Zooplankton community dominated by rotifers (Keratella cochlearis, Synchaeta oblonga) in spring (March to May). However, Copepod (Nauplius) and Cladoceran (Bosmina longirostris) dominated in St.4. In summer (June to August), there was a few strong rainfall event and the highest number of individuals dominated by Keratella cochlearis (Rotifera) and Difflugia corona (Protozoa) were shown during the study period. In autumn (October to November), the water temperature was decreased with decrease in the total number of individuals showing Nauplius (Copepoda) as the dominant species. As a result of the statistical analysis about zooplankton variation in environmental factors, the continuous periods of water shortage increased the hydraulic retention time and showed different characteristic for each site. St.1, St.3 and St.2, St.4 are shown in the same group (p<0.05), showing the each characteristics of river type and lake type. Therefore, the water quality of catchment area and distribution of zooplankton community would be attributed to hydraulic and hydrological factors.

A Study for establishment of soil moisture station in mountain terrain (1): the representative analysis of soil moisture for construction of Cosmic-ray verification system (산악 지형에서의 토양수분 관측소 구축을 위한 연구(1): Cosmic-ray 검증시스템 구축을 위한 토양수분량 대표성 분석 연구)

  • Kim, Kiyoung;Jung, Sungwon;Lee, Yeongil
    • Journal of Korea Water Resources Association
    • /
    • 제52권1호
    • /
    • pp.51-60
    • /
    • 2019
  • The major purpose of this study is to construct an in-situ soil moisture verification network employing Frequency Domain Reflectometry (FDR) sensors for Cosmic-ray soil moisture observation system operation as well as long-term field-scale soil moisture monitoring. The test bed of Cosmic-ray and FDR verification network system was established at the Sulma Catchment, in connection with the existing instrumentations for integrated data provision of various hydrologic variables. This test bed includes one Cosmic-ray Neutron Probe (CRNP) and ten FDR stations with four different measurement depths (10 cm, 20 cm, 30 cm, and 40 cm) at each station, and has been operating since July 2018. Furthermore, to assess the reliability of the in-situ verification network, the volumetric water content data measured by FDR sensors were compared to those calculated through the core sampling method. The evaluation results of FDR sensors- measured soil moisture against sampling method during the study period indicated a reasonable agreement, with average values of $bias=-0.03m^3/m^3$ and RMSE $0.03m^3/m^3$, revealing that this FDR network is adequate to provide long-term reliable field-scale soil moisture monitoring at Sulmacheon basin. In addition, soil moisture time series observed at all FDR stations during the study period generally respond well to the rainfall events; and at some locations, the characteristics of rainfall water intercepted by canopy were also identified. The Temporal Stability Analysis (TSA) was performed for all FDR stations located within the CRNP footprint at each measurement depth to determine the representative locations for field-average soil moisture at different soil profiles of the verification network. The TSA results showed that superior performances were obtained at FDR 5 for 10 cm depth, FDR 8 for 20 cm depth, FDR2 for 30 cm depth, and FDR1 for 40 cm depth, respectively; demonstrating that those aforementioned stations can be regarded as temporal stable locations to represent field mean soil moisture measurements at their corresponding measurement depths. Although the limit on study duration has been presented, the analysis results of this study can provide useful knowledge on soil moisture variability and stability at the test bed, as well as supporting the utilization of the Cosmic-ray observation system for long-term field-scale soil moisture monitoring.

Comparative assessment and uncertainty analysis of ensemble-based hydrologic data assimilation using airGRdatassim (airGRdatassim을 이용한 앙상블 기반 수문자료동화 기법의 비교 및 불확실성 평가)

  • Lee, Garim;Lee, Songhee;Kim, Bomi;Woo, Dong Kook;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • 제55권10호
    • /
    • pp.761-774
    • /
    • 2022
  • Accurate hydrologic prediction is essential to analyze the effects of drought, flood, and climate change on flow rates, water quality, and ecosystems. Disentangling the uncertainty of the hydrological model is one of the important issues in hydrology and water resources research. Hydrologic data assimilation (DA), a technique that updates the status or parameters of a hydrological model to produce the most likely estimates of the initial conditions of the model, is one of the ways to minimize uncertainty in hydrological simulations and improve predictive accuracy. In this study, the two ensemble-based sequential DA techniques, ensemble Kalman filter, and particle filter are comparatively analyzed for the daily discharge simulation at the Yongdam catchment using airGRdatassim. The results showed that the values of Kling-Gupta efficiency (KGE) were improved from 0.799 in the open loop simulation to 0.826 in the ensemble Kalman filter and to 0.933 in the particle filter. In addition, we analyzed the effects of hyper-parameters related to the data assimilation methods such as precipitation and potential evaporation forcing error parameters and selection of perturbed and updated states. For the case of forcing error conditions, the particle filter was superior to the ensemble in terms of the KGE index. The size of the optimal forcing noise was relatively smaller in the particle filter compared to the ensemble Kalman filter. In addition, with more state variables included in the updating step, performance of data assimilation improved, implicating that adequate selection of updating states can be considered as a hyper-parameter. The simulation experiments in this study implied that DA hyper-parameters needed to be carefully optimized to exploit the potential of DA methods.

Health Assessment of the Nakdong River Basin Aquatic Ecosystems Utilizing GIS and Spatial Statistics (GIS 및 공간통계를 활용한 낙동강 유역 수생태계의 건강성 평가)

  • JO, Myung-Hee;SIM, Jun-Seok;LEE, Jae-An;JANG, Sung-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • 제18권2호
    • /
    • pp.174-189
    • /
    • 2015
  • The objective of this study was to reconstruct spatial information using the results of the investigation and evaluation of the health of the living organisms, habitat, and water quality at the investigation points for the aquatic ecosystem health of the Nakdong River basin, to support the rational decision making of the aquatic ecosystem preservation and restoration policies of the Nakdong River basin using spatial analysis techniques, and to present efficient management methods. To analyze the aquatic ecosystem health of the Nakdong River basin, punctiform data were constructed based on the position information of each point with the aquatic ecosystem health investigation and evaluation results of 250 investigation sections. To apply the spatial analysis technique, the data need to be reconstructed into areal data. For this purpose, spatial influence and trends were analyzed using the Kriging interpolation(ArcGIS 10.1, Geostatistical Analysis), and were reconstructed into areal data. To analyze the spatial distribution characteristics of the Nakdong River basin health based on these analytical results, hotspot(Getis-Ord Gi, $G^*_i$), LISA(Local Indicator of Spatial Association), and standard deviational ellipse analyses were used. The hotspot analysis results showed that the hotspot basins of the biotic indices(TDI, BMI, FAI) were the Andong Dam upstream, Wangpicheon, and the Imha Dam basin, and that the health grades of their biotic indices were good. The coldspot basins were Nakdong River Namhae, the Nakdong River mouth, and the Suyeong River basin. The LISA analysis results showed that the exceptional areas were Gahwacheon, the Hapcheon Dam, and the Yeong River upstream basin. These areas had high bio-health indices, but their surrounding basins were low and required management for aquatic ecosystem health. The hotspot basins of the physicochemical factor(BOD) were the Nakdong River downstream basin, Suyeong River, Hoeya River, and the Nakdong River Namhae basin, whereas the coldspot basins were the upstream basins of the Nakdong River tributaries, including Andong Dam, Imha Dam, and Yeong River. The hotspots of the habitat and riverside environment factor(HRI) were different from the hotspots and coldspots of each factor in the LISA analysis results. In general, the habitat and riverside environment of the Nakdong River mainstream and tributaries, including the Nakdong river upstream, Andong Dam, Imha Dam, and the Hapcheon Dam basin, had good health. The coldspot basins of the habitat and riverside environment also showed low health indices of the biotic indices and physicochemical factors, thus requiring management of the habitat and riverside environment. As a result of the time-series analysis with a standard deviation ellipsoid, the areas with good aquatic ecosystem health of the organisms, habitat, and riverside environment showed a tendency to move northward, and the BOD results showed different directions and concentrations by the year of investigation. These aquatic ecosystem health analysis results can provide not only the health management information for each investigation spot but also information for managing the aquatic ecosystem in the catchment unit for the working research staff as well as for the water environment researchers in the future, based on spatial information.