DOI QR코드

DOI QR Code

Estimation of the Total Terrestrial Organic Carbon Flux of Large Rivers in Korea using the National Water Quality Monitoring System

수질측정망을 이용한 국내 대하천 하구를 통한 총유기탄소 유출량 산정과 비교

  • Park, Hyung-Geun (Division of Basic Research, National Institute of Ecology) ;
  • Ock, Giyoung (Division of Basic Research, National Institute of Ecology)
  • 박형근 (국립생태원 생태기반연구실) ;
  • 옥기영 (국립생태원 생태기반연구실)
  • Received : 2017.11.25
  • Accepted : 2017.11.30
  • Published : 2017.12.31

Abstract

Rivers continuously transport terrestrial organic carbon matter to the estuary and the ocean, and they play a critical role in productivity and biodiversity in the marine ecosystem as well as the global carbon cycle. The amount of terrestrial organic carbon transporting from the rivers to ocean is an essential piece of information, not only for the marine ecosystem management but also the carbon budget within catchment. However, this phenomenon is still not well understood. Most large rivers in Korea have a well-established national monitoring system of the river flow and the TOC (Total Organic Carbon) concentration from the mountain to the river mouth, which are fundamental for estimating the amount of the TOC flux. We estimated the flux of the total terrestrial organic carbon of five large rivers which flow out to the Yellow Sea, using the data of the national monitoring system (the monthly mean TOC concentration and the monthly runoff of river flow). We quantified the annual TOC flux of the five rivers, showing their results in the following order: the Han River ($18.0{\times}10^9gC\;yr^{-1}$)>>Geum River ($5.9{\times}10^9gC\;yr^{-1}$)>Yeongsan River ($2.6{\times}10^9gC\;yr^{-1}$)>Sumjin River ($2.0{\times}10^9gC\;yr^{-1}$)>>Tamjin River ($0.2{\times}10^9gC\;yr^{-1}$). The amount of the Han River, which is the highest in the Korean rivers, corresponds to be 4% of the annual total TOC flux of in the Yellow River, and moreover, to be 0.6% of Yangtze River.

본 연구에서는 국가 수질 유량 측정망을 통해 생산된 모니터링 자료를 이용하여 서남해로 유출되는 우리나라의 한강, 금강, 영산강, 섬진강, 탐진강을 대상으로 총유기탄소의 연간 유출량을 정량하여 비교하였으며, 이를 황해를 공유하는 중국의 양쯔강과 황하강의 탄소 유출량과 비교하였다. TOC 농도는 환경부 물환경정보시스템에서 제공하는 하구 지점의 주단위 자료를 '월평균 TOC 농도'로 전환했으며, 유량자료는 국가수자원관리종합정보시스템에서 제공하는 장기유출 월유량자료를 활용하여, 월간 TOC flux를 산정한 뒤, 최종적으로 이를 합산하여 강 하구에서 바다로 유출되는 연간 TOC flux를 산출하였다. 월간 TOC flux는 모든 강에서 여름철의 유출량이 높았으며, 겨울철에 낮게 나타났다. 이는 우리나라 강의 유기탄소 유출 특성이 아시아 몬순 기후의 강우패턴의 영향을 크게 받고 있다는 것을 의미한다. 연간 TOC flux 산정결과에 따르면, 한강은 $18.0{\times}10^9gC\;yr^{-1}$로서 가장 높은 유기탄소 유출량을 기록했으며, 금강은 한강의 1/3 수준으로 $5.9{\times}10^9gC\;yr^{-1}$, 영산강과 섬진강은 각각 $2.6{\times}10^9gC\;yr^{-1}$$2.0{\times}10^9gC\;yr^{-1}$을 기록했으며, 유역규모가 가장 작은 탐진강은 $0.2{\times}10^9gC\;yr^{-1}$로서 한강의 1/90이었다. 본 연구에서 정량한 우리나라 주요 강의 월별 그리고 연간 총유기탄소 유출량의 결과값들은 황해를 공유하는 중국의 대하천들과 비교할 수 있는 국내 대표 자료를 제공할 수 있다. 국내 최대 유기탄소 유출량을 보이는 한강은 중국 황하강에서 유출되는 유기탄소량의 약 4%에 해당하며, 양쯔강과 비교하면 0.6% 정도의 적은 양이라고 할 수 있다. 본 연구는 서남해안으로 유출되는 국내 주요 강의 유기탄소 유출량에 대한 정량적인 자료를 제시함으로써 향후 국내 다른 유역과의 비교뿐만 아니라 동아시아 규모의 탄소이동과 순환연구를 위한 중요한 정보를 제공할 것이다.

Keywords

References

  1. Cole JJ, YT Prairie, NF Caraco, WH McDowell, LJ Tranvik, RG Striegl, CM Duarte, P Kortelainen, JA Downing and JJ Middelburg. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172-185. https://doi.org/10.1007/s10021-006-9013-8
  2. Fu Y, C Tang, J Li, Y Zhao, W Zhong and X Zeng. 2014. Sources and transport of organic carbon from the Dongjiang River to the Humen outlet of the Pearl River, southern China. J. Geogr. Sci. 24:143-158. https://doi.org/10.1007/s11442-014-1078-2
  3. Hedges J, R Keil and R Benner. 1997. What happens to terrestrial organic matter in the ocean? Org. Geochem. 27:195-212. https://doi.org/10.1016/S0146-6380(97)00066-1
  4. Hedges J, WA Clack, PD Quay, JE Richey, AH Devol and M Santos. 1986. Composition and fluxes of organic matter in the Amazon River. Limnol. Oceanogr. 31:717-738. https://doi.org/10.4319/lo.1986.31.4.0717
  5. Hope D, M Billett and M Cresser. 1994. A review of the export of carbon in river water: fluxes and processes. Environ. Pollut. 84:301-324. https://doi.org/10.1016/0269-7491(94)90142-2
  6. Johnes PJ. 2007. Uncertainties in annual riverine phosphorus load estimation: Impact of load estimation methodology, sampling frequency, baseflow index and catchment population density. J. Hydrol. 332:241-258. https://doi.org/10.1016/j.jhydrol.2006.07.006
  7. Jung BJ, HJ Lee, JJ Jeong, J Owen, B Kim, K Meusburger, C Alewell, G Gebauer, C Shope and JH Park. 2012. Storm pulses and varying sources of hydrologic carbon export from a mountainous watershed. J. Hydrol. 440:90-101.
  8. Jung BJ, L Jeanneau, C Alewell, B Kim and JH Park. 2015. Downstream alteration of the composition and biodegradability of particulate organic carbon in a mountainous, mixed land-use watershed. Biogeochem. 122:79-99. https://doi.org/10.1007/s10533-014-0032-9
  9. Li M, C Peng, M Wang, X Wei, K Zhang, K Wang, G Shi and Q Zhu. 2017. The carbon flux of global rivers: A re-evaluation of amount and spatial patterns. Ecol. Indic. 80:40-51. https://doi.org/10.1016/j.ecolind.2017.04.049
  10. Meybeck M and C Vorosmarty. 1999. Global transfer of carbon by rivers. Global Change Newsletter 37:18-19.
  11. Oh NH. 2016. The loads and biogeochemical properties of riverine carbon. Korean J. Ecol. Environ. 49:245-257. https://doi.org/10.11614/KSL.2016.49.4.245
  12. Probst J, P Amiotte-Suchet and W Ludwig. 1994. Continental erosion and river transports of carbon to oceans. Trends in Hydrology, New Delhi. pp. 453-468.
  13. Ramkumar Mu, K Kumaraswamy and R Mohanraj. 2015. Environmental management of river basin ecosystems. Springer Press, Germany.
  14. Ran L, X Lu, H Sun, J Han, R Li and J Zhang. 2013. Spatial and seasonal variability of organic carbon transport in the Yellow River, China. J. Hydrol. 498:76-88. https://doi.org/10.1016/j.jhydrol.2013.06.018
  15. Schlesinger WH and JM Melack. 1981. Transport of organic carbon in the world's rivers. Tellus 33:172-187.
  16. Schlunz B and R Schneider. 2000. Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux and burial rates. Int. J. Earth Sci. 88:599-606. https://doi.org/10.1007/s005310050290
  17. Wang X, H Ma, R Li, Z Song and J Wu. 2012. Seasonal fluxes and source variation of organic carbon transported by two major Chinese Rivers: The Yellow River and Changjiang (Yangtze) River. Global Biogeochem. 26:1-10.
  18. Zhang G, MA Nearing and B Liu. 2005. Potential effects of climate change on rainfall erosivity in the Yellow River basin of China. Trans. ASAE 48:511-517. https://doi.org/10.13031/2013.18325
  19. Zhang Q, T Jiang, M Gemmer and S Becker. 2005. Precipitation, temperature and runoff analysis from 1950 to 2002 in the Yangtze basin, China. Hydrolog. Sci. J. 50:65-80.