• Title/Summary/Keyword: Catalytic Material

Search Result 301, Processing Time 0.028 seconds

Pretreatment Effect on CO Oxidation over Highly Ordered Mesoporous Silver Catalyst

  • Shon, Jeong-Kuk;Park, Jung-Nam;Hwang, Seong-Hee;Jin, Mingshi;Moon, Ki-Young;Boo, Jin-Hyo;Han, Tae-Hee;Kim, Ji-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.415-418
    • /
    • 2010
  • Highly ordered mesoporous silver material was successfully synthesized from a mesoporous silica template (KIT-6) with 3-D channel structure using the nano-replication method. The effects of $H_2$ or $O_2$ pretreatments on the catalytic performance of the mesoporous silver were investigated using a temperature programmed CO oxidation technique in a fixed bed reactor. The mesoporous silver material that was pretreated with $H_2$ exhibited an excellent catalytic activity compared to the as-prepared and $O_2$-pretreated catalysts. Moreover, this present mesoporous silver material showed good catalytic stability. For the CO oxidation, the apparent activation energy of the $H_2$-pretreated mesoporous silver catalyst was $61{\pm}0.5\;kJ\;mol^{-1}$, which was also much lower than the as-prepared ($132{\pm}1.5\;kJ\;mol^{-1}$) and $O_2$-pretreated ($124{\pm}1.4\;kJ\;mol^{-1}$) catalysts.

Preparation and Application of ACFs Derived from the Petroleum Pitch and the Organometallic Compounds

  • Hong, Ik-Pyo;Ha, Baik-Hyon
    • Carbon letters
    • /
    • v.3 no.3
    • /
    • pp.146-151
    • /
    • 2002
  • Activated carbon fibers were prepared from the petroleum isotropic pitch and organometallic compounds. The metalsvwere dispersed uniformly in the ACFs. The specific surface area and pore size distributions of metal containing ACFsvwere measured. The mesopores of ACFs were developed by Co, Ni, and Mn metals addition and the catalytic reactivityvof ACFs'SOx removal was increased by adding Ni and Pd metals. It was found that the mesopores did not work forvthe improvement of catalytic reactivity of ACFs' SOx removal with the blank experiment using the metal removedvACFs.

  • PDF

Strain Dependence of Adsorption Energy of Single Layer MoS2: Possibility of Catalytic Usage

  • Jeon, Bu-Gyeong;Lee, Chang-Hui
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.355-356
    • /
    • 2016
  • It is shown that the maximum value of exchange current is obtained where hydrogen adsorption energy is near 0. This enables to estimate catalytic efficiency of a material with hydrogen adsorption energy, which is relatively easier to calculate with density fuctional theory (DFT) method. Strain dependence of the adsorption energy was studied with DFT method and adsorption energy of 0.04 eV per hydrogen atom is obtained at 30% strain.

  • PDF

Mass production of carbon nanotubes using Vapor Phase Growth (기상합성법을 이용한 탄소나노튜브의 대량합성)

  • 류승철;이태재;이철진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.123-126
    • /
    • 2001
  • Multiwalled carbon nanotubes were massively produced by the catalytic reaction of C$_2$H$_2$ - Fe(CO)$\sub$5/ mixture at 750 - 950$^{\circ}C$ in a quartz tube reactor and over quartz substrates. Well-aligned MWNT array grows perpendicular to the quartz tube reactor and the quartz substrates at an average of 60 nm in diameter and up to several thousands of micrometers in length. This method does not require any pretreatment of substrates and CNTs are grown at atmospheric pressure. It could be suitable for mass production of multiwalled nanotubes. Scanning electron microscope and transmission electron microscope images of the nanotubes deposited on the substrates allowed us to monitor the quality of MWNTs grown under different operating conditions.

  • PDF

Effect of Ammonia Gas on Growth of Chemically Vapor-Deposited Carbon Nanotubes (화학기상증착법에 의한 탄소나노튜브의 성장에 미치는 암모니아 가스의 영향)

  • Lee, Dong-Gu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.418-423
    • /
    • 2010
  • Carbon nanotubes (CNTs) were synthesized by Fe-catalytic chemical vapor deposition (CVD) method about $800^{\circ}C$. The influence of process parameters such as pretreatment conditions, gas flow ratio, processing time, etc on the growth of CNTs was investigated by field emission scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. Ammonia was added to acetylene source gas before and during the CNT growth. Different types of CNTs formed depending upon the processing condition. It was found that ammonia prevented amorphous carbons from adsorbing to the outer wall of CNT, resulting in purification of CNTs during CNT growth.

High Yield Synthesis of Singlewalled Carbon Nanotubes (단층벽 탄소나노튜브의 고순도 합성)

  • Kim, Jong-Sik;Kim, Gwan-Ha;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.162-163
    • /
    • 2005
  • Singlewalled carbon nanotubes are largely synthesized on Fe-Mo/MgO catalysts by catalytic decomposition of CH4 in H2. Raman data revel that the as-prepared SWNTs have a diameter of about 0.7-1.2nm. It is found that the diameter of the as-prepared SWNTs can be controlled mainly by adjusting the molar ratio of Fe-MO versus the MgO support. The experimental results was documented with scanning electron microscopy(SEM), X-ray Diffractometer(XRD) and Raman spectroscopy.

  • PDF

Transition Metal-Based Layered Double Hydroxides for Oxygen Evolution Reaction Catalysts (전이금속 이중층 수산화물 기반 산소발생반응 촉매 연구 동향)

  • Da-Un Han;Gyeongbae Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.358-373
    • /
    • 2024
  • Oxygen evolution reaction is a critical bottleneck for the development of efficient electrochemical hydrogen production because of its sluggish reaction. Among various catalysts, transition metal-based layered double hydroxide has drawn significant attention due to their excellent catalytic properties and cost-effectiveness. This paper begins with basic crystal structures, and then conventional adsorbate evolution mechanism of layered double hydroxide. Strategies for enhancing catalytic properties based on adsorbate evolution mechanism and lattice oxygen mechanism that could surpass theoretical limit of adsorbate evolution mechanism are discussed. This paper ends with a brief discussion on the challenges and future directions of layered double hydroxide-based oxygen evolution reaction catalysts.

Graphene Based Cu Oxide Nanocomposites for C-N Cross Coupling Reaction

  • Choi, Jong Hoon;Park, Joon B.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.138.2-138.2
    • /
    • 2013
  • Copper oxide is a multi-functional material being used in various research areas including catalysis, electrochemical materials, oxidizing agents etc. Among these areas, we have synthesized and utilized graphene based copper oxide nanocomposites (CuOx/Graphene) for the catalytic applications (C-N cross coupling reaction). Briefly, Cu precursors were anchored on the graphite oxide(GO) sheets being exfoliated and oxidized from graphite powder. Two different crystalline structures of Cu2O and CuO on graphene and GO were prepared by annealing them in Ar and O2 environments, respectively. The morphological and electronic structures were systemically investigated using FT-IR, XRD, XPS, XAFS, and TEM. Here, we demonstrate that the catalytic performance was found to depend on oxidative states and morphological structures of CuOx graphene nanocomposites. The relationship between the structure of copper oxides and catalytic efficiency toward C-N cross coupling reaction will be discussed.

  • PDF

Catalytic Fast Pyrolysis of Tulip Tree (Liriodendron) for Upgrading Bio-oil in a Bubbling Fluidized Bed Reactor

  • Ly, Hoang Vu;Kim, Jinsoo;Kim, Seung-Soo;Woo, Hee Chul;Choi, Suk Soon
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.79-87
    • /
    • 2020
  • The bio-oil produced from the fast pyrolysis of lignocellulosic biomass contains a high amount of oxygenates, causing variation in the properties of bio-oil, such as instability, high acidity, and low heating value, reducing the quality of the bio-oil. Consequently, an upgrading process should be recommended ensuring that these bio-oils are widely used as fuel sources. Catalytic fast pyrolysis has attracted a great deal of attention as a promising method for producing upgraded bio-oil from biomass feedstock. In this study, the fast pyrolysis of tulip tree was performed in a bubbling fluidized-bed reactor under different reaction temperatures, with and without catalysts, to investigate the effects of pyrolysis temperature and catalysts on product yield and bio-oil quality. The system used silica sand, ferric oxides (Fe2O3 and Fe3O4), and H-ZSM-5 as the fluidized-bed material and nitrogen as the fluidizing medium. The liquid yield reached the highest value of 49.96 wt% at 450 ℃, using Fe2O3 catalyst, compared to 48.45 wt% for H-ZSM-5, 47.57 wt% for Fe3O4 and 49.03 wt% with sand. Catalysts rejected oxygen mostly as water and produced a lower amount of CO and CO2, but a higher amount of H2 and hydrocarbon gases. The catalytic fast pyrolysis showed a high ratio of H2/CO than sand as a bed material.