DOI QR코드

DOI QR Code

Effect of Ammonia Gas on Growth of Chemically Vapor-Deposited Carbon Nanotubes

화학기상증착법에 의한 탄소나노튜브의 성장에 미치는 암모니아 가스의 영향

  • Lee, Dong-Gu (Department of Information and Nano Materials Engineering, Kumoh National Institute of Technology)
  • 이동구 (금오공과대학교 정보나노소재공학)
  • Published : 2010.05.01

Abstract

Carbon nanotubes (CNTs) were synthesized by Fe-catalytic chemical vapor deposition (CVD) method about $800^{\circ}C$. The influence of process parameters such as pretreatment conditions, gas flow ratio, processing time, etc on the growth of CNTs was investigated by field emission scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. Ammonia was added to acetylene source gas before and during the CNT growth. Different types of CNTs formed depending upon the processing condition. It was found that ammonia prevented amorphous carbons from adsorbing to the outer wall of CNT, resulting in purification of CNTs during CNT growth.

Keywords

References

  1. S. Iijima, Nature 354, 56 (1991). https://doi.org/10.1038/354056a0
  2. J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E.Smalley, and C. Dekker, Nature 391, 59 (1998). https://doi.org/10.1038/34139
  3. S. Iijima and T. Ichihashi, Nature 363, 603 (1993). https://doi.org/10.1038/363603a0
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T, Thio,and P. A. Wolff, Nature 391, 667 (1998). https://doi.org/10.1038/35570
  5. D.-G. Lee, M. Yi, H. Jung, W.-S. Seo, J.-W. Park,H.-T. Chun, and N.-J. Koh, Materials Science Forum 426-432, 2297, (2003). https://doi.org/10.4028/www.scientific.net/MSF.426-432.2297
  6. A. C. Dillon, K. M. Jones, T. A. Bekedahl, C. H.Kang, D. S. Bethune, and M. J. Heben, Nature 386,377 (1997). https://doi.org/10.1038/386377a0
  7. J. Lefebvre, M. Radosavljevic, and A. T. Johnson,Appl. Phys. Lett. 76, 3828 (2000). https://doi.org/10.1063/1.126795
  8. P. G. Collins, A. Zettl, H. Bando, A. Thess, and R.E. Smalley, Science 278, 100 (1997). https://doi.org/10.1126/science.278.5335.100
  9. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M.Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee,and J. E. Fisher, Nature 388, 756 (1997). https://doi.org/10.1038/41972
  10. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J.Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzier,D. T. Colbert, G. E. Scuseria, J. E. Fisher, and R.E. Smalley, Science 273, 483 (1996). https://doi.org/10.1126/science.273.5274.483
  11. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P.Bush, M. P. Siegal, and P. N. Provencio, Science282, 1105 (1998). https://doi.org/10.1126/science.282.5391.1105
  12. C. Bower, W. Zhu, S. Jin, and O. Zhou, Appl. Phys. Lett. 77, 830 (2000). https://doi.org/10.1063/1.1306658
  13. C. J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S.Park, Y. H. Lee, W. B. Choi, N. S. Lee, G. S. Park,and J. M. Kim, Chem. Phys. Lett. 312, 461 (1999). https://doi.org/10.1016/S0009-2614(99)01074-X
  14. S. Fan, M. G. Chapline, N. R. Franklin, T. W.Tombler, A. M. Cassell, and H. Dai, Science 283,512 (1999). https://doi.org/10.1126/science.283.5401.512
  15. T.-Y. Kim, K.-H. Oh, M.-J. Jung, S.-C. Lee, andK.-R. Lee, J. Korean Vac. Soc. 12, 70 (2003).
  16. G. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, K. H.Son, and D. J. Kim, J. Appl. Phys. 91, 3847 (2002). https://doi.org/10.1063/1.1448877
  17. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S.Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, Science274, 1701 (1996). https://doi.org/10.1126/science.274.5293.1701
  18. M. Yudasaka, R. Kikuchi, T. Matsui, Y. Ohki, S.Yoshimura, and E. Ota, Appl. Phys. Lett. 67, 2477(1995). https://doi.org/10.1063/1.114613
  19. X. H. Chen, S. Q. Feng, Y. Ding, J. C. Peng, and Z.Z, Chen, Thin Solid Films 339, 6 (1999). https://doi.org/10.1016/S0040-6090(98)00809-8
  20. S. H. Tsai, C. W. Chao, C. L. Lee, and H. C. Shin,Appl. Phys. Lett. 74, 3462 (1999). https://doi.org/10.1063/1.124128
  21. W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu,and S. Xie, Appl. Phys. Lett. 70, 2684 (1997). https://doi.org/10.1063/1.118993